A Journey through Moduli Space

  • Jacob Issaka Kwame Nkrumah University of Science and Technology
  • Amos Sosoo Kwame Nkrumah University of Science and Technology
  • Charles Bukure Kwame Nkrumah University of Science and Technology
  • Bawa Hawa Kwame Nkrumah University of Science and Technology
  • Agnes Oppong Seppeh Kwame Nkrumah University of Science and Technology
  • Bright Kwaku Anokye Kwame Nkrumah University of Science and Technology
  • Opoku Frederick Kwame Nkrumah University of Science and Technology
  • Michael Tweneboah Darkwah Kwame Nkrumah University of Science and Technology
  • William Obeng-Denteh Kwame Nkrumah University of Science and Technology
Keywords: Moduli theory, Moduli spaces, Functor, Algebraic stacks, Classifying spaces, Homotopy type, Deformation theory, Riemannian surfaces
Share Article:

Abstract

Every mathematical landscape has its terrain, and moduli spaces form one of the richest terrains of all. They are the maps we draw to navigate families of shapes, curves, and structures, capturing both their similarities and their hidden symmetries. This work explores the rich theory of moduli spaces, which are geometric objects that classify families of algebraic or topological structures up to isomorphism. Starting with moduli functors, the study examines the conditions under which fine and coarse moduli spaces exist, and the role of algebraic stacks, especially within the framework of algebraic stacks, in handling cases involving automorphisms. The exposition also connects moduli theory to topology through classifying spaces and homotopy theory, and discusses how deformation theory reveals the local structure and behaviour of moduli spaces. Overall, the journey through moduli space unifies diverse mathematical tools and perspectives to provide a unified understanding of classification problems in geometry and beyond. This work is an invitation to walk through that landscape—from the first guiding ideas to the more intricate pathways of stacks, classifying spaces, and deformation theory—before ending by looking toward new horizons

Downloads

Download data is not yet available.

References

Behrend, K. (1993). Gromov-Witten invariants in algebraic geometry. Inventiones Mathematicae, 127(3), 601–617.

Deligne, P., & Mumford, D. (1969). The irreducibility of the space of curves of given genus. Publications Mathématiques de l’IHÉS, 36, 75–109.

Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S., Nitsure, N., & Vistoli, A. (2005). Fundamental algebraic geometry: Grothendieck’s FGA explained (Mathematical Surveys and Monographs No. 123). American Mathematical Society.

Farb, B., & Margalit, D. (2011). A primer on mapping class groups (Princeton Mathematical Series, Vol. 49). Princeton University Press.

Galatius, S., & Randal-Williams, O. (2014). Stable moduli of high-dimensional manifolds. Acta Mathematica, 212(2), 257–377.

Gardiner, F. P., & Lakic, N. (2000). Quasiconformal Teichmüller theory (Mathematical Surveys and Monographs, No. 76). American Mathematical Society.

Harer, J. (1985). The cohomology of the moduli space of curves. In E. B. Dynkin (Ed.), Theory of moduli (pp. 138–221). Lecture Notes in Mathematics, 1337. Springer.

Harer, J. (1986). The virtual cohomological dimension of the mapping class group of an orientable surface. Inventiones Mathematicae, 84(1), 157– 176. https://doi.org/10.1007/BF01388737

Hartshorne, R. (2015). Algebraic geometry (Graduate Texts in Mathematics Vol. 52). Springer.

Hatcher, A. (2001). Algebraic topology. Cambridge University Press.

Husemoller, D. (1994). Fibre bundles (3rd ed. Graduate Texts in Mathematics).

Springer.Huybrechts, D., & Lehn, M. (2010). The geometry of moduli spaces of sheaves (2nd ed.). Cambridge University Press.

Laumon, G., & Moret-Bailly, L. (2000). Champs algébriques (Ergebnisse der mathematic aund ihrer Grenzgebiete, 3. Folge, vol 39). Springer.

Looijenga, E. (2013). Mapping class groups and Moduli spaces of curves.In A Papadopoulos (Ed.), Handbook of Teichmüller Theory (Vol. III, pp. 69 – 144). European Mathematical Society Publishing House.

Madsen, I., & Weiss, M. (2007). The stable moduli space of Riemann surfaces: Mumford's conjecture. Annals of Mathematics, 165(3), 843–941.

Milnor, J., & Stasheff, J. (2016). Characteristic classes (Annals of Mathematics Studies, Vol. 76). Princeton University Press.

Mumford, D., Fogarty, J., & Kirwan, F. (1994). Geometric invariant theory (3rdEd., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34) Berlin: Springer-Verlag.

Olsson, M.C. (2016). Algebraic spaces and stacks (Colloquium Publications No. 62). American Mathematical Society.

Porta, M., & Yu, T. Y. (2020). Higher analytic stacks and GAGA theorems. Advances in Mathematics, 400, 108275.

Schlessinger, M. (1968). Functors of Artin rings. Transactions of the American Mathematical Society, 130(2), 208–222.

Stacks Project Authors (2024). The Stacks Project. Retrieved from https://stacks.math.columbia.edu

Teixidor i Bigas, M. (2024). Ranks of maps of Vector bundles on curves (Version 2). arXiv:2208.04414.

Toën, B., & Vezzosi, G. (2008). Homotopical algebraic geometry II: Geometric stacks and applications. Memoirs of the American Mathematical Society, 193(902).

Vakil, R. (2023). The rising sea: Foundations of algebraic geometry (Latest ed.). Retrieved from http://math.stanford.edu/~vakil/216blog.

Published
19 September, 2025
How to Cite
Issaka, J., Sosoo, A., Bukure, C., Hawa, B., Seppeh, A., Anokye, B., Frederick, O., Darkwah, M., & Obeng-Denteh, W. (2025). A Journey through Moduli Space. East African Journal of Interdisciplinary Studies, 8(2), 241-252. https://doi.org/10.37284/eajis.8.2.3683