Effect of Legume-Finger Millet Intercropping on Finger Millet Productivity and Soil Organic Carbon Stocks

  • Joseph Ekwangu, PhD Bulindi Zonal Agricultural and Development Research Institute
  • Twaha Ali Basamba Ateenyi, PhD Makerere University
  • Susan Balaba Tumwebaze, PhD Makerere University
  • Wilber Wambi Bulindi Zonal Agricultural and Development Research Institute
  • Ivan Abaho, PhD Bulindi Zonal Agricultural and Development Research Institute
  • Godfrey Otim Anyoni, PhD Ngetta Zonal Agricultural Research and Development Institute
Keywords: Finger Millet, Intercropping, Land Equivalent Ratio, Legumes, Soil Organic Carbon
Share Article:

Abstract

The soils in the semi-arid areas of eastern Uganda are mainly ferralsols and plinthosols, characterised by low soil organic carbon (SOC) and soil fertility. On-farm experiments were therefore conducted in Kumi and Amuria districts in the parishes of Olupe and Kuju, respectively, in eastern Uganda. To assess the effect of finger millet legume integration options on finger millet productivity and soil organic carbon stocks. One farmer household with fields having ferralsols and plinthosols was purposively selected from each parish to host the experiment. The study adopted a factorial experiment, where two finger millet varieties (Seremi II, and NARO MIL 3) were the main plot, three legumes (groundnuts, green gram, and cowpeas) constituted the subplot, and one planting pattern (one row of legume and two rows of finger millet) made the sub-sub plot treatment, totaling eleven treatments. The experiment was laid down in a randomised complete block design (RCBD) with three replicates. Three experimental seasons (2021 B, 2022 A, and 2022B) were conducted. Soil and crop data were collected and analysed using GenStat and Minitab 14th editions. Results revealed that intercropping finger millet (NARO MIL 3 and SEREMI II) with cowpea recorded the highest yield returns (2617 and 2387) kg ha-1, respectively, land equivalent ratio of 1.8 and 1.2, respectively, and SOC of 0.310 t ha-1 yr-1. It was therefore concluded that intercropping finger millet with cowpea at a 1x2 planting arrangement improves finger millet yield and SOC stocks in ferralsols and plinthosols.

Downloads

Download data is not yet available.

References

Uganda National Meteological Authority (UNMA). (2022). Press release - MAM seasonal rainfall outlook 2022. Uganda National Meteorological Authority. https://www.unma.go.ug/download/press-release-mam-seasonal-rainfall-outlook-2022/.

Tenywa, J. S., Nyende, P., Kidoido, M., Kasenge, V., Oriokot, J., & Mbowa, S. (1999). Prospects and constraints of finger millet production in Eastern Uganda. African Crop Science Journal, Vol. 7(4), 569-583. https://tspace.library.utoronto.ca/html/1807/20155/cs99048.html.

Ebanyat, P., de Ridder, N., Bekunda, M., Delve, R. J., & Giller, K. E. (2021). Efficacy of Nutrient Management Options for Finger Millet Production on Degraded Smallholder Farms in Eastern Uganda. Frontiers in Sustainable Food Systems, 5(67) 26- 49. https://www.frontiersin.org/articles/10.3389/fsufs.2021.674926.

Owere, L., Tongoona, P., Derera, J., & Wanyera, N. (2014). Farmers’ Perceptions of Finger Millet Production Constraints, Varietal Preferences and Their Implications to Finger Millet Breeding in Uganda. Journal of Agricultural Science, 6(12), p126. https://doi.org/10.5539/jas.v6n12p126.

Ekwangu, J., Anguria, P., Andiku, C., Tenywa, J. S., Bisikwa, J., Wanyera, N., & Ugen, M. A. (2020). Fertilizer Micro-dosing and Timing of Weeding for Enhancing Finger-Millet Production in Eastern Uganda. Journal of Agricultural Science, 12(11), p290. https://doi.org/10.5539/jas.v12n11p290.

Ekwangu, Joseph, Susan Balaba, Twaha Ateenyi, John Tenywa, and Sylvester Baguma. 2023. “Spatial Distribution of Soil Organic Carbon, Nitrogen and Phosphorus Levels in the Finger-Millet Growing Areas of Eastern Uganda.” Journal of Agronomy 23(1):1–9. https://doi:10.3923/ja.2024.1.9.

Andiku, C., Shimelis, H., Laing, M., Shayanowako, A. I. T., Adrogu Ugen, M., Manyasa, E., & Ojiewo, C. (2021). Assessment of sorghum production constraints and farmer preferences for sorghum variety in Uganda: Implications for nutritional quality breeding. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71(7), 620– 632. https://doi.org/10.1080/09064710.2021.1944297.

Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., Kumar, J., & Kumar, A. (2017). Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Frontiers in Plant Science, 8(6), p43. https://doi.org/10.3389/fpls.2017.00643.

Gupta Choudhury, S., Yaduvanshi, N. P. S., Chaudhari, S. K., Sharma, D. R., Sharma, D. K., Nayak, D. C., & Singh, S. K. (2018). Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India. Environmental Monitoring and Assessment, 190(3), p117. https://doi.org/10.1007/s10661-018-6486-9.

Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G., & Priyadarisini, V. B. (2014). Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. Journal of Food Science and Technology, 51(6), p1021–1040. https://doi.org/10.1007/s13197-011-0584-9.

Maharajan, T., Antony Ceasar, S., Ajeesh Krishna, T. P., & Ignacimuthu, S. (2021). Finger Millet [Eleusine coracana (L.) Gaertn]: An Orphan Crop With a Potential to Alleviate the Calcium Deficiency in the Semi-arid Tropics of Asia and Africa. Frontiers in Sustainable Food Systems, 5(68), p4447. https://www.frontiersin.org/articles/10.3389/fsufs.2021.684447

Ashik S. K., & Morya, S. (2022). A review on finger millet properties, processing, health benefits, and applications. The Pharma Innovation, 11, 3388– 3395. https://doi.org/10.22271/tpi.2022.v11.i7aq.14538.

Derebe, B., Worku, A., Chanie, Y., & Wolie, A. (2021). On-farm participatory evaluation and selection of legumes intercropped with finger millet (Eleusine coracana L) in Western Amhara. Heliyon, 7(11), e08319. https://doi.org/10.1016/j.heliyon.2021.e08319

Masvaya, E. N., Nyamangara, J., Descheemaeker, K., & Giller, K. E. (2017). Is maize-cowpea intercropping a viable option for smallholder farms in the risky environments of semi-arid southern Africa? Field Crops Research, 209, 73–87. https://doi.org/10.1016/j.fcr.2017.04.016

Willey, R. W., & Osiru, D. S. O. (1972). Studies on mixtures of maize and beans ( Phaseolus vulgaris ) with particular reference to plant population. The Journal of Agricultural Science, 79(3), 517–529. https://doi.org/10.1017/S0021859600025909

Myaka, F. M., Sakala, W. D., Adu-Gyamfi, J. J., Kamalongo, D., Ngwira, A., Odgaard, R., Nielsen, N. E., & Hogh-Jensen, H. (2006). Yields and accumulations of N and P in farmer-managed intercrops of maize-pigeonpea in semi-arid Africa. Plant and Soil 295:127-136. http://agris.fao.org/agris-search/search.do?recordID=US201301103166

Bitew, Y., Alemayehu, G., Adego, E., & Assefa, A. (2019). Boosting land use efficiency, profitability and productivity of finger millet by intercropping with grain legumes. Cogent Food & Agriculture, 5(1), 1702826. https://doi.org/10.1080/23311932.2019.1702826

Egeru, A. (2012). Role of Indigenous Knowledge in Climate Change Adaptation: A case study of the Teso Sub-Region, Eastern Uganda. Indian Journal of Traditional Knowledge 11(2), 217-224.

UNDP. (2014). Teso, Amuria District Hazard, Risk and Vulnerability profile. Survey report, (p. 45).

Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method: Soil Science, 37(1), 29– 38. https://doi.org/10.1097/00010694-193401000-00003

Okalebo, J. R., Cathua, K. W., & Woomer, P. L. (2002). Diagnostic indicators of soil quality in productive and non-productive smallholders’ fields of Kenya’s central highlands. Agriculture, ecosystem and environment 79: 1-8. https://www.google.com/search

Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., & van Kessel, C. (2005). The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Science Society of America Journal, 69(4), 1078–1085. https://doi.org/10.2136/sssaj2004.0215

Favero, V. O., Carvalho, R. H., Motta, V. M., Leite, A. B. C., Coelho, M. R. R., Xavier, G. R., Rumjanek, N. G., & Urquiaga, S. (2021). Bradyrhizobium as the Only Rhizobial Inhabitant of Mung Bean (Vigna radiata) Nodules in Tropical Soils: A Strategy Based on Microbiome for Improving Biological Nitrogen Fixation Using Bio-Products. Frontiers in Plant Science, 11(60), p2645. https://doi.org/10.3389/fpls.2020.602645

Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. https://www.tandfonline.com/doi/abs/10.1080/23311932.2020.1769805

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 10-117. https://doi.org/10.1007/s13213-010-0117-1

Kumar, B., & Ray, D. (2020). Finger millet intercropping with legumes step towards increasing farmer’s income. International Journal of Chemical Studies, 8, 1038–1040. https://doi.org/10.22271/chemi.2020.v8.i3m.9334

Ojiem, J. O., Ridder, N. de, Vanlauwe, B., & Giller, K. E. (2007). Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant and soil 292(1), 119–135. https://doi.org/10.1007/s11104-007-9207-7.

Sennhenn, A., Njarui, D. M. G., Maass, B. L., & Whitbread, A. M. (2017). Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya—Coping with the Impacts of Climate Variability. Frontiers in Plant Science, 8, 699. https://doi.org/10.3389/fpls.2017.00699

Xing, H., Liu, D. L., Li, G., Wang, B., Anwar, M. R., Crean, J., Lines-Kelly, R., & Yu, Q. (2017). Incorporating grain legumes in cereal-based cropping systems to improve profitability in southern New South Wales, Australia. Agricultural Systems, 154, 112–123. https://doi.org/10.1016/j.agsy.2017.03.010

Olupot, G., Smucker, A. J. M., Kalyango, S., Opolot, E., Boniface, O., Patrick, M., Twaha, A. B., & Singh, B. R. (2021). Novel Climate Smart Water and Nutrient Conservation Technologies for Optimizing Productivity of Marginal Coarse-Textured Soils. In W. Leal Filho, U. M. Azeiteiro, & A. F. F. Setti (Eds.), Sustainability in Natural Resources Management and Land Planning (pp. 201–215). Springer International Publishing. https://doi.org/10.1007/978-3-030-76624-5_13

Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., & Sanginga, N. (2010). Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook on Agriculture, 39(1), 17- 24. https://doi.org/10.5367/000000010791169998

Sululu, P., Ngode, L., & Anjichi, V. (2022). Effects of Intercropping Finger Millet (Eleusine coracana) with Common Beans (Phaseolusvulgaris) on Weed Management in Finger Millet in Trans Nzoia County, Kenya. Africa Environmental Review Journal, 5(2), p268. https://doi.org/10.2200/aerj.v5i2.268

Mason, A. R. G., Salomon, M. J., Lowe, A. J., & Cavagnaro, T. R. (2023). Microbial solutions to soil carbon sequestration. Journal of Cleaner Production, 417, 137993. https://doi.org/10.1016/j.jclepro.2023.137993

Published
25 June, 2025
How to Cite
Ekwangu, J., Ateenyi, T. A., Tumwebaze, S., Wambi, W., Abaho, I., & Anyoni, G. (2025). Effect of Legume-Finger Millet Intercropping on Finger Millet Productivity and Soil Organic Carbon Stocks. East African Journal of Agriculture and Biotechnology, 8(1), 467-482. https://doi.org/10.37284/eajab.8.1.3211