Impact of Fermentation and Enzyme-Treatment on In-vitro Dry Matter Digestibility, Proximal Chemical Composition, Amino Acids and Tannin Content of Prosopis juliflora Pod Meal
Ikisiri
In vitro and proximal chemical analyses are important ways of determining new potential feed resources. Prosopis juliflora pods contain high crude fibre and tannin levels that entrap nutrients and limit utilization. This study evaluated the effect of unfermented pods (treatment 1), spontaneously fermented pods for 3 (treatment 2), 6 (treatment 3), and 9 days (treatment 4) and Aspergillus niger-induced fermentation for 3 (treatment 5), 6 (treatment 6), and 9 days (treatment 7) days) on in vitro dry matter digestibility (IVDMD), crude protein, amino acids and tannin content and tannin content of Prosopis pods. The effect of Natuzyme®-treated unfermented pods (treatment 8) on IVDMD was also determined. Results indicated that treatment 1 had lower (P < 0.05) dry matter content as compared to treatments 2, 5 and 6. Treatments 3 and 6 increased (P < 0.05) crude protein content compared to other treatments. Treatment 3 resulted in higher (P < 0.05) amino acid content (tryptophan; methionine and lysine) than pods in other treatments. There were reduced (P < 0.05) tannin levels in all treatments apart from treatment 1. Treatments 3, 4, and 8 had higher (P < 0.05) IVDMD compared to treatments 1 and 5. The study concluded that 6 days of spontaneous fermentation (treatment 3) had a significant effect on the improvement of crude protein content, amino acids, IVDMD and reduced tannin levels. The use of Natuzyme® was found to improve the IVDMD of pods. The results recommended 6 days of spontaneous fermentation as the method of processing pods as an ingredient in formulating poultry diets
Upakuaji
Marejeleo
Al-Soqeer, A. A., Menshawy, A. M., Mousa, H. M., Aggag, A. M., & Motawei, M. I., (2023) Genetic diversity of the chemical composition and pod production of Prosopis juliflora trees grown in Saudi Arabia. Heliyon, 9(11), e21649–e21649. https://doi.org/10.1016/j.heliyon.2023.e21649
Balogun, M. A., Oyeyiola, G. P., (2011) Microbiological and chemical changes during the production of okpehe from Prosopis africana seeds. Journal of Asian Scientific Research, 1(8), 390.
Bhatta, R., Vaithiyanathan, S., Shinde, A. K. Jakhmola, R. C. (2005) Effect of feeding complete feed block containing Prosopis cineraria leaves and polyethylene glycol (PEG)‐6000 on nutrient intake, its utilization, rumen fermentation pattern and rumen enzyme profile in kids. Journal of the Science of Food and Agriculture, 85(11), 1788-1794. https://doi.org/10.1002/jsfa.2111
Boisen, S., and Fernández, J. A., (1997) Prediction of the total tract digestibility of energy in Feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology, 68(3-4), 277–286. https://doi.org/10.1016/s0377-8401(97)00058-8
Choge, S. K., Odee, D., Okeyo, M., (2006) Management and control of Prosopis species in Baringo District of Kenya. Project terminal technical report. FAO TCP/KEN/3002. KEFRI.
Choge, S. K., Pasiecznik, N. M., Harvey, M., Wright, J., Awan, S. Z., Harris, P. J. C., (2007) Prosopis pod as human food, with special reference to Kenya. Water SA, 33(3), 419-424.http://dx.doi.org/10.4314/wsa.v33i3.49162
Ezenwa, L. I., Omondi, P. A., Nwagbara, M. O., Gbadebo, A. M., Bada, B. S. (2018) Climate variability and its effects on gender and coping strategies in Baringo County, Kenya. Journal of Applied Sciences and Environmental Management, 22(5), 699-706. https://dx.doi.org/10.4314/jasem.v22i5.14
Fadahunsi, I. F., Sanni, A. I. (2010) Chemical and biochemical changes in Bambara nut (Voandzeia subterranea (L) Thours) during fermentation to 'Tempeh'. Electronic Journal of Environmental, Agricultural & Food Chemistry, 9(2).
Girma, M., Urge, M. Animut, G. (2011) Ground Prosopis juliflora Pods as Feed Ingredient in Poultry Diet: Effects on Growth and Carcass Characteristics of Broilers. International Journal of Poultry Science, 10(12), 970–976. https://doi.org/10.3923/ijps.2011.970.976
Han, X. Ma., Ding, Y., Fang, S. J., Liu, G. (2023) Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Animal Nutrition, 14, 356–369. https://doi.org/10.1016/j.aninu.2023.06.004
Heyer, C. M., Jaworski, N. W., Page, G. I., Zijlstra, R. T. (2022) Effect of fiber fermentation and Protein digestion kinetics on mineral digestion in pigs. Animals, 12(16), 2053. https://doi.org/10.3390/ani12162053
Imelda, J., Paulraj, R. & Bhatnagar, D. (2008) Effect of solid state fermentation on nutrient composition of selected feed ingredients. Indian Journal of Fisheries, 55(4), 327-332.
Jahromi. M. F., Liang, J. B., Rosfarizan, M., Goh, Y. M., Shokryazdan, P., Ho, Y. W. (2010 Effects of Aspergillus niger (K8) on nutritive value of rice straw. African Journal of Biotechnology, 9(42), 7043-7047.
Jannathulla, R., Dayal, J. S., Vasanthakumar, D., Ambasankar, K., Muralidhar, M. (2017) Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus (Litopenaeus) vannamei. Indian Journal of Fisheries, 64(2). https://doi.org/10.21077/ijf.2017.64.2.60341-07
Jha, R. & Mishra, P. (2021) Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: a review. Journal of Animal Science and Biotechnology, 12(1). https://doi.org/10.1186/s40104-021-00576-0
Jiménez, N,. Esteban-Torres, M., Mancheño, J. M., de las Rivas, B., Muñoz, R. (2014) Tannin Degradation by a Novel Tannase Enzyme Present in Some Lactobacillus plantarum Strains. Applied and Environmental Microbiology, 80(10), 2991–2997. https://doi.org/10.1128/aem.00324-14
Kavila, R., Mwivandi, J., Raphael, G., & Samuel, M. (2020). Estimating Prosopis pod production in the drylands of Magadi in Kajiado, Kenya. East African Journal of Science, Technology and Innovation, 1(4). https://doi.org/10.37425/eajsti.v1i4.170
Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K. Singhania, R. R. (2020) Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 124566. https://doi.org/10.1016/j.biortech.2020.124566
Latorre, J., Hernandez-Velasco, D., Kuttappan, X., Wolfenden, V. A., Vicente, R., Wolfenden, J., Bielke, A., Prado-Rebolledo, L., Morales, O., Hargis, E. B. M., Tellez, G. (2015) Selection of Bacillus spp. for Cellulase and Xylanase Production as Direct-Fed Microbials to Reduce Digesta Viscosity and Clostridium perfringens Proliferation Using an in vitro Digestive Model in Different Poultry Diets. Frontiers in Veterinary Science, 2(25). https://doi.org/10.3389/fvets.2015.00025
Marii, N. D., Kashongwe, O. B., King’ori, A. M. (2022) Effects of treating Prosopis juliflora pods with multienzyme, with and without bacterial cultures on in vitro dry matter digestibility (IVDMD), fermentation kinetics, and performance of growing pigs. Tropical Animal Health and Production, 54(2), 125. https://doi.org/10.21203/rs.3.rs-627070/v1
Maud, A., King’ori, A. M., Matofari, J. W. (2023) Effect of incorporation of fermented Prosopis pods in rabbit diets-on feed intake, feed conversion ratio, weight gain and growth rate. International Journal of Veterinary Sciences and Animal Husbandry, 8(5S), 236– 241. https://doi.org/10.22271/veterinary.2023.v8.i5sd.757
Mejia, L. A., Núñez, M. J., Gallegos, B., Cuadra, J. A., Castillo, U. G. (2022) “Atol Shuco”, a Traditional Corn-Fermented Salvadorian Beverage: Phytochemical, Microbiological and Nutritional Considerations. In Hispanic Foods: Chemistry of Fermented Foods (pp. 29-48). American Chemical Society.
Misquitta, S. A., Kshirsagar, D. N., Dange, P. R., Choudhari, V. G., Kabra, M. M., (2023) Digestibility of proteins in legumes. IntechOpen EBooks. https://doi.org/10.5772/intechopen.110372
Muriithi, G., Olago, D., Ouma, G., Oriaso, S., (2018) Long-term observed precipitation trends in arid and semi-arid lands, Baringo County, Kenya. Journal of Agricultural Economics and Rural Development, 4(1), 326-334.
Odero-Waitituh, J. A., King'ori, A. M., Ambula, M. K. (2020). Lactation performance of New Zealand white rabbits fed fermented ground mature Prosopis juliflora pods replacing maize. Animal Research International, 17(2), 3736-3746.
Ruiz-Nieto, J. E., Hernández-Ruiz, J., Hernández-Marín, J., Mendoza-Carrillo, J., Abraham-Juárez, M., Isiordia-Lachica, P. M., Mireles-Arriaga, A. I. (2020) Mesquite (Prosopis spp.) tree as a feed resource for animal growth. Agroforestry Systems, 94(4), 1139-1149. https://doi.org/10.1007/s10457-020-00481-x
Sarasvati, S., Sujata, B., Amita, S., Doshi, B. R. (2014) Effects of fermentation on nutritional quality of Prosopis juliflora pods as alternative fish feed. Research Journal of Animal, Veterinary and Fishery Sciences, 2(12), 1-7.
SAS. (2002) Statistical Analysis Systems Institute/STAT: User’s Guide. Release (6.03 Edition). Cary, NC, United States of America.
Sawal, R. K., Ratan, R. Yadav, S. B. S. (2004) Mesquite (Prosopis juliflora) Pods as a Feed Resource for Livestock - A Review -. Asian-Australasian Journal of Animal Sciences, 17(5),719–725. https://doi.org/10.5713/ajas.2004.719
Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., Kulshrestha, S. (2020) Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106
Singh, A. K. & Kim, W. K. (2021) Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals, 11(1), 181. https://doi.org/10.3390/ani11010181
Singh, P., Pandey, V. K., Sultan, Z., Singh, R., Dar, A. H. (2023) Classification, benefits, and applications of various anti-nutritional factors present in edible crops. Journal of Agriculture and Food Research, 14, 100902–100902. https://doi.org/10.1016/j.jafr.2023.100902
Sirajo, M. and Sani, N. A. (2015) Effect of fermentation on nutritional composition of Prosopis africana seeds. Annals: Food Science & Technology,16(2).
Sugiharto, S. & Ranjitkar, S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review.Animal Nutrition, 5(1), 1-10.
Tejeda, O. & Kim, W. K. (2021) Role of Dietary Fiber in Poultry Nutrition. Animals, 11(2), 461. https://doi.org/10.3390/ani11020461
Valente Junior, D. T., Genova, J. L., Kim, S. W., Saraiva, A. Rocha, G. C. (2024) Carbohydrases and Phytase in Poultry and Pig Nutrition: A Review beyond the Nutrients and Energy Matrix. Animals, 14(2), 226. https://doi.org/10.3390/ani14020226
Volpato, J. A., Ribeiro, L. B., Torezan, G. B., da Silva, I. C., de Oliveira, M. I., Francisco, J. C. P., Vasconcellos, R. S. (2023 Determinant production factors to the in vitro organic matter digestibility and protein oxidation of poultry by-product meal. Poultry Science, 102(3), https://doi.org/10.1016/j.psj.2023.102481
Wanjohi, D. M., King’ori, A. M., Wachira, A. M., Guliye, A. Y. (2017) Effect of replacing complete grower diet with ground Prosopis juliflora pods on performance of improved indigenous chicken in Kenya. Livestock Research for Rural Development. Volume 29, Article #157. Retrieved May 4, 2024, from http://www.lrrd.org/lrrd29/8/dunc29157.html
Wu, Z., Liu, J., Chen, J., Pirzado, S. A., L., I Y., Cai, H. Liu, G. (2020) Effects of fermentation on Standardized ileal digestibility of amino acids and apparent metabolizable energy in rapeseed meal fed to broiler chickens. Animals, 10(10), 1774. https://doi.org/10.3390/ani10101774
Yusuf, N. D., Ogah, D. M., Hassan, D. I., Musa, M. M. Doma, U. D. (2008) Effect of decorticated fermented Prosopis seed meal (Prosopis africana) on growth performance of broiler chicken. International Journal of Poultry Science, 7(11), 1054-1057.https://doi.org/10.3923/ijps.2008.1054.1057
Zaefarian, F., Cowieson, A. J., Pontoppidan, K., Abdollahi, M. R., Ravindran, V. (2021). Trends in feed evaluation for poultry with emphasis on in vitro techniques. Animal Nutrition, 7(2), 268-281. https://doi.org/10.1016/j.aninu.2020.08.006
Zhang, S., Zhong, R., Gao, L., Liu, Z., Chen, L., Zhang, H. (2020) Effects of Optimal Carbohydrase Mixtures on Nutrient Digestibility and Digestible Energy of Corn- and Wheat-Based Diets in Growing Pigs. Animals, 10(10), 1846. https://doi.org/10.3390/ani10101846
Zhong, J., Lu, P., Wu, H., Liu, Z., Sharifi-Rad, J., Setzer, W. N., Suleria, H. A. (2022) Current Insights into phytochemistry, nutritional, and pharmacological properties of Prosopis plants. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/2218029
Copyright (c) 2025 Duncan Maina Wanjohi, Anthony Macharia King’ori, Mary Kivali Ambula, Irene Thiguku Kamanja

This work is licensed under a Creative Commons Attribution 4.0 International License.