Variation in Soil Organic Carbon and Total Nitrogen Content in Different Agroforestry Practices of Moshi Rural District, Northern Tanzania

  • Godlisten Saria University of Dodoma
  • Pantaleo Munishi, PhD Sokoine University of Agriculture
  • Japhet Kashaigili, PhD Sokoine University of Agriculture
Keywords: Agroforestry Practices, Vertical Distribution, Spatial Variation
Share Article:

Downloads

Download data is not yet available.

References

Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, ecosystems & environment 99(1-3):15-27.

Asfaw, Z., & Ågren, G. I. (2007). Farmers’ local knowledge and topsoil properties of agroforestry practices in Sidama, Southern Ethiopia. Agroforestry Systems 71(1): 35-48.

Basamba, T. A., Mayanja, C., Kiiza, B., Nakileza, B., Matsiko, F., Nyende, P., & Ssekabira, K. (2016). Enhancing adoption of agroforestry in the eastern agroecological zone of Uganda. Int. J. Ecol. Sci. Environ. Eng 3: 20-31.

Bossio, D., Cook-Patton, S., Ellis, P., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R., Von Unger, M., & Emmer, I. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability 3 (5):391–398.

Chapman, M., Walker, W. S., Cook‐Patton, S. C., Ellis, P. W., Farina, M., Griscom, B. W., & Baccini, A. (2020). Large climate mitigation potential from adding trees to agricultural lands. Global Change Biology 26(8): 4357-4365.

Chatterjee, N., Nair, P.R., Nair, V.D., Viswanath, S., & Bhattacharjee, A. (2019). Depth-wise distribution of soil-carbon stock in aggregate-sized fractions under shaded-perennial agroforestry systems in the Western Ghats of Karnataka, India. Agroforestry Systems 1-18.

Chirwa, P. W., Black2, C. R., Ong, C. K., & Maghembe, J. A. (2003). Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agroforestry Systems 59: 265-277.

De Beenhouwer, M., Geeraert, L., Mertens, J., Van Geel, M., Aerts, R., Vanderhaegen, K., & Honnay, O. (2016). Biodiversity and carbon storage co-benefits of coffee agroforestry across a gradient of increasing management intensity in the SW Ethiopian highlands. Agriculture, Ecosystems & Environment 222: 193-199.

Ding, J., Chen, L., Ji, C., Hugelius, G., Li, Y., Liu, L., & Yang, Y. (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience 10(6): 420-424.

FAO. (2012). National Sample Census of Agriculture 2002/2003 Volume Vc: Regional Report: Kilimanjaro region [https://www.fao.org/tempref/AG/Reserved/PPLPF/ftpOUT/GLiPHA/DATA/Queue/Working/Tanzania/KILIMANJARO%20REGION%20REPORT.pdf] Site visited on 15/6/ 2018.

Fernandes, E. C., & Nair, P. R. (1986). An evaluation of the structure and function of tropical home gardens. Agricultural Systems 21(4): 279-310.

Fonte, S. J., Barrios, E., & Six, J. (2010). Earthworms, soil fertility and aggregate-associated soil organic matter dynamics in the Quesungual agroforestry system. Geoderma 155(3-4): 320-328.

Gama-Rodrigues, E.F., Gama-Rodrigues, A.C., & Nair, P.K.R. (2011). Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia. Advances in Agroforestry, vol. 8. Springer Business Media B.V., Brazil doi: [ http://dx.doi. org/10.1007/978-94-007-1630-85.] Site visited on 17/8/ 2021.

Gao, X., Meng, T., & Zhao, X. (2017). Variations of soil organic carbon following land use change on deep‐loess hillslopes in China. Land Degradation & Development 28(7): 1902-1912.

Gautam, T. P., & Mandal, T. N. (2013). “Soil characteristics in moist tropical forest of Sunsaridistrict, Nepal,” Nepal Journal of Science and Technology 14(1):35-40.

Ge, S., Xu, H., Ji, M., & Jiang, Y. (2013). Characteristics of soil organic carbon, total nitrogen, and C/N ratio in Chinese apple orchards. Open Journal of Soil Science 3(5): 213-217

Gebrewahid, Y., Gebre-Egziabhier, T. B., Teka, K., & Birhane, E. (2018). Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray, Northern Ethiopia. Ecological processes 7: 1-8.

Gebrewahid, Y., Teka, K., Gebre-Egziabhier, T. B., Tewolde-Berhan, S., Birhane, E., Eyasu, G., & Meresa, E. (2019). Dispersed trees on smallholder farms enhance soil fertility in semi-arid Ethiopia. Ecological Processes 8(1): 1-8.

Ghimire, P., Bhatta, B., Pokhrel, B., Kafle, G., & Paudel, P. (2018). “Soil organic carbon stocks under different land uses in Chure region of Makawanpur district, Nepal,” SAARC. Journal of Agriculture 16(2):13-23.

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., & Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences 114(44): 11645-11650.

Guo, J., Wang, B., Wang, G., Wu, Y., & Cao, F. (2020). Afforestation and agroforestry enhance soil nutrient status and carbon sequestration capacity in eastern China. Land Degrad. Dev 31(3): 392–403.

Guyassa, E., Raj, A. J., Gidey, K., & Tadesse, A. (2014). Domestication of indigenous fruit and fodder trees/shrubs in dryland agroforestry and its implication on food security. Int J Ecosyst 4(2): 83-88.

Hemp, A. (2006). The Banana Forests of Kilimanjaro: Biodiversity and Conservation of the Chagga Homegardens. Forest Diversity and Management 2: 133-155.

Hobley, E., Wilson, B., Wilkie, A., Gray, J., & Koen, T. (2015). Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant and Soil 390: 111-127.

Hunde, K. K. (2015). The role of Agroforestry system as strategy to adapt and mitigate climate change: A review with examples from Tropical and Temperate regions. Clim Change 1: 20-25.

Ikegami, K. (1994). The Traditional Agrosilvopastoral Complex System in the Kilimanjaro Region, and its Implications for the Japanese-Assisted Lower Irrigation Project. [https://repository.kulib.kyoto-u.ac.jp › d space › bit stream › ASM_15_189]. Site visited on 27/7/ 2018.

Kafle, G. (2019). Vertical Distribution of Soil Organic Carbon and Nitrogen in a Tropical Community Forest of Nepal. International Journal of Forestry Research, 2019, Article ID 3087570, 6 pages. [https://doi.org/10.1155/2019/ 3087570]. Site visited on 12/9/ 2021

Kafle, G., Magar, L. K., & Aryal, P. (2020). Assessment of Soil Organic Carbon in Tropical Agroforests in the Churiya Range of Makawanpur, Nepal. International Journal of Forestry Research Volume 2020, Article ID 8816433, 5 pages

Kunlanit, B. Butnan, S., & Vitykon, P. (2019). Land-use changes influencing carbon sequestration in topsoil and subsoil. Agronomy 9:1-16.

Liu, L., & Greaver, T. L. (2010). “A global perspective on belowground carbon dynamics under nitrogen enrichment,” Ecology Letters 13(7):819-828.

Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., & Yu, G. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global change biology 23(1): 455-464.

Lorenz, K., & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development 34(2): 443-454.

Maghimbi, S. (2007). Recent changes in crop patterns in the Kilimanjaro region of Tanzania: the decline of coffee and the rise of maize and rice. African study monographs. Supplementary issue 35: 73-83.

Mamo, D., & Asfaw, Z. (2017). Assessment of farmers’ management activities on scattered trees on crop fields at Gemechis district, West Hararge Zone, Oromia, Ethiopia. International Journal of Agriculture 2(1): 41-57.

Mayer, S., Wiesmeier, M., Sakamoto, E., Hübner, R., Cardinael, R., Kühnel, A., & Kogel-Knabner, I. (2021). Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis. Agriculture, Ecosystems and Environment 323: 107689

Mganga, K. Z., Razavi, B. S., & Kuzyakov, Y. (2016). Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena141: 22-29. 0746333333

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.S., Cheng, K., Das, B.S., &, Field, D.J. (2017). Soil carbon 4 per mille. Geoderma 292: 59-86.

Misana, S. B., Sokoni, C., & Mbonile, M. J. (2012). Land-use/cover changes and their drivers on the slopes of Mount Kilimanjaro, Tanzania. Journal of Geography and Regional Planning 5(8): 151.

Monroe, P.H.M., Gama-Rodrigues, E.F., Gama-Rodrigues, A.C., & Marques, J.R.B. (2016). Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agriculture, Ecosystems & Environment 221: 99-108.

Mukundente, L., Ndunda, E., & Gathuru, G. (2019). Agroforestry technologies adopted by smallholder farmers in Southern province of Rwanda. East African Journal of Forestry and Agroforestry 1(1):24-31.

Mulvaney, R.L. (1996). Nitrogen-inorganic forms. Methods of soil analysis: Part 3 Chemical methods 5:1123-1184.

Munishi, P.K.T., & Shear, T. (2004). Carbon Storage of two Afromontane rain forests in the Eastern Arc Mountains of Tanzania. Journal of Tropical Forest Science 16(1): 78-93.

Nair, P.K.R. (2012). Carbon sequestration studies in agroforestry systems: a reality-check. Agroforestry Systems 86:243–253

Negash, M. (2013). The indigenous agroforestry systems of the south-eastern Rift Valley escarpment, Ethiopia: their biodiversity, carbon stocks, and litterfall. Tropical Forestry Reports No. 44. Doctoral Thesis. University of Helsinki

Negash, M., & Starr, M. (2013). “Biomass and soil carbon stocks of Indigenous agroforestry systems on the south-eastern rift valley escarpment, Ethiopia,” Plant and Soil 393: 95–107.

Negash, M., Kaseva, J., & Kahiluoto, H. (2022). Determinants of carbon and nitrogen sequestration in multistrata agroforestry. Science of The Total Environment, 851, 158185.

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods5: 961-1010.

Niu, S., Wu, M., Han, Y. I., Xia, J., Zhang, Z. H. E., Yang, H., & Wan, S. (2010). Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology 16(1): 144-155.

Oelbermann, M., & Voroney, R.P. (2007). Carbon and nitrogen in a temperate agroforestry system: using stable isotopes as a tool to understand soil dynamics. Ecological Engineering29(4):342-349.

Oelbermann, M., Voroney, R. P., Thevathasan, N. V., Gordon, A. M., Kass, D. C., & Schlönvoigt, A. M. (2006). Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agroforestry Systems68(1):27-36.

Pan, C., Zhao, H., Zhao, X., Han, H., Wang, Y., & Li, J. (2013). Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization. PloS one 8(1): e54827.

Pandey, D. N. (2002). Carbon sequestration in agroforestry systems. Climate policy 2(4): 367-377.

Pandey, H. P., & Bhusal, M. (2016). “A comparative study on carbon stock in Sal (Shorea robusta) forest in two different ecological regions of Nepal,” Banko Janakari 26(1):24–31

Parihaar, R. S., Bargali, K., & Bargali, S. S. (2015). Status of an indigenous agroforestry system: a case study in Kumaun Himalaya, India. Indian Journal of Agricultural Sciences 85(3): 442-447.

Pathak, P., & Reddy, A. S. (2021). Vertical distribution analysis of soil organic carbon and total nitrogen in different land use patterns of an agro-organic farm. Tropical Ecology 62(3):386-397.

Pellerin, S., Bami` ere, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, I., & Bellassen, V. (2020). Stocker du carbone dans les solsfrançais. Quel potentiel au regard de l’objectif 4 pour 1000 et ` a quel coût? Rapport scientifique de l’´ etude, INRA (France), 540 p. pp.

Pellerin, S., Bamière, L., Angers, D., Béline, F., Benoît, M., Butault, J.P., Chenu, C., ColnenneDavid, C., De Cara, S., Delame, N., Doreau, M., Dupraz, P., Faverdin, P., Garcia-Launay, F., Hassouna, M., Hénault, C., Jeuffroy, M., Klumpp, K., Metay, A., Moran, D., Recous, S., Samson, E., Savini, I., & Pardon, L. (2013). How can French agriculture contribute to reducing greenhouse gas emissions? Abatement potential and cost of ten technical measures. Synopsis of the Study Report, INRA (France)

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project. org/

Reich, P. B., Hungate, B. A., & Luo, Y. (2006). “Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide,” Annual Review of Ecology, Evolution and Systematics 37(1):611:636

Riezebos, H.T.H., & Loerts, A. C. (1998). Influence of land use change and tillage practice on soil organic matter in southern Brazil and eastern Paraguay. Soil and Tillage Research 49:271-275.

Saha, S. K., Nair, P. R., Nair, V. D., & Kumar, B. M. (2009). Soil carbon stock in relation to plant diversity of home gardens in Kerala, India. Agroforestry Systems (76): 53-65.

Schmitt-Harsh, M., Evans, T. P., Castellanos, E., & Randolph, J. C. (2012). Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agroforestry Systems86(2): 141-157.

Shrestha, B. M., Sitaula, B. K., Singh, B. R., & Bajracharya, R. M. (2004). Soil organic carbon stocks in soil aggregates under different land use systems in Nepal. Nutrient cycling in agro-ecosystems 70(2):201-213.

Smith, J., Pearce, B. D., & Wolfe, M. S. (2013). Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture and Food Systems 28(1): 80-92.

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E., & Deheuvels, O. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ 173:46–57.

Song, Z., McGrouther, K., & Wang, H. (2016). “Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems,” Earth-Science Reviews 158:19-30

Soto-Pinto, L., Perfecto, I., & Caballero-Nieto, J. (2002). Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry systems 55(1): 37-45.

Tafere, S. M., & Nigussie, Z. A. (2018). The adoption of introduced agroforestry innovations: determinants of a high adoption rate–a case-study from Ethiopia. Forests, Trees and Livelihoods 27(3): 175-194.

Tan, K. H. (2005). Soil sampling, preparation, and analysis. CRC press. Second Edition. University of Georgia Greensboro, Georgia, New York. 668pp.

Thangata, P.H., & Alavalapati, J.R. (2003). Agroforestry adoption in southern Malawi: the case of mixed intercropping of Gliricidia sepium and maize. Agricultural Systems 78(1):57-71.

Tumwebaze, S. B., & Byakagaba, P. (2016). Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agriculture, Ecosystems and Environment216: 188–193.

Tumwebaze, S. B., Bevilacqua, E., Briggs, R., & Volk, T. (2012). Soil organic carbon under a linear simultaneous agroforestry system in Uganda. Agroforestry Systems 84: 11-23.

Undie, U. L., Uwah, D. F., & Attoe, E. E. (2012). Effect of intercropping and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of south southern Nigeria. Journal of Agricultural Science 4(4): 37-50.

Upson, M.A., & Burgess, P.J. (2013). Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil 373: 43–58.

Urgessa Waktola, T., & Fekadu, K. (2021). Adoption of coffee shade agroforestry technology and shade tree management in Gobu Seyo district, East Wollega, Oromia. Advances in Agriculture 2021.

URT. (1998). Kilimanjaro Region Socio-Economic Profile. The planning commission in Dar es Salaam and Kilimanjaro Regional Commissioner’s office, Government Printers, Dar es Salaam, Tanzania. 238pp.

URT. (2002). Kilimanjaro Region Socio-Economic Profile. The planning commission in Dar es Salaam and Kilimanjaro Regional Commissioner’s office, Government Printers, Dar es Salaam, Tanzania. 237pp.

Verchot, L. V., Van Noordwijk, M., Kandji, S., Tomich, T., Ong, C., Albrecht, A., & Palm, C. (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and adaptation strategies for global change 12: 901-918.

Vitousek, P.M., & Howarth, R.W. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87-115.

Von Cossel, M., Wagner, M., Lask, J., Magenau, E., Bauerle, A., Von Cossel, V., & Winkler, B. (2019). Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 9(10): 605.

Wang, S., Wang, Q., Adhikari, K., Jia, S., Jin, X., & Liu, H. (2016). Spatial-temporal changes of soil organic carbon content in Wafangdian, China. Sustainability 8(11):1154.

Wills, S. A., Burras, C. L., & Sandor, J. A. (2007). Prediction of soil organic carbon content using field and laboratory measurements of soil colour. Soil Science Society of America Journal71(2): 380-388.

Zongolo, S. A., Kiluvia, S., & Mghase, G. (2000). Traditional irrigation assessment report, Moshi Rural District 2000. Traditional irrigation and environmental development organization, Moshi. 36 pp.

Published
13 December, 2024
How to Cite
Saria, G., Munishi, P., & Kashaigili, J. (2024). Variation in Soil Organic Carbon and Total Nitrogen Content in Different Agroforestry Practices of Moshi Rural District, Northern Tanzania. East African Journal of Forestry and Agroforestry, 7(1), 453-470. https://doi.org/10.37284/eajfa.7.1.2520