Removal of Acid Red 88 from an Aqueous Solution Using Kaolinite Clay by Adsorption Process

  • Derrick Dadebo Egypt-Japan University of Science and Technology
  • Denis Obura Pan African University
Keywords: Adsorption, Acid Red 88, Aqueous Solution, Kaolinite Clay, Industrial, Wastewater
Share Article:

Abstract

Dyes are hazardous contaminants normally found in industrial wastewaters necessitating costly and complex technologies for their removal. In this study, clay was used as an adsorbent in the removal of anionic acid red 88 (AR 88) dye from industrial wastewaters by adsorption. The dye removal efficiency and adsorption capacity of clay was studied by batch experimentation with respect to parameters of dye initial concentration, clay dosage, contact time, and pH. The dye removal efficiency of AR 88 improved with increasing dosage (r 0.9826, p < 0.05), contact time (r 0.9821, p 0.000683) and decreased with increasing initial concentration (r - 0.9168, p 0.02844) and pH (r -0.9666, p 0.007297) of the solution. At initial AR dye concentration of 100 mg/L, the removal efficiency and adsorption capacity of 89.7% and 4.38 mg/g, respectively were achieved after equilibrium time of 30 minutes under the optimum conditions of pH 2 and clay dosage 20 g/L. The study thrived in applying an efficient and low-cost adsorbent that could be used as a substitute to high-cost conventional commercial adsorbents in treating industrial wastewater with AR dye coloration

Downloads

Download data is not yet available.

References

Abdi, G., Alizadeh, A., Amirian, J., Rezaei, S., & Sharma, G. (2019). Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. Journal of Molecular Liquids, 289, 111118.

AbdurRahman, F. B., Akter, M., & Abedin, M. Z. (2013). Dyes removal from textile wastewater using orange peels. International journal of scientific & technology research, 2(9), 47-50.

Afanga, H., Zazou, H., Titchou, F. E., Rakhila, Y., Akbour, R. A., Elmchaouri, A., Ghanbaja, J., & Hamdani, M. (2020). Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustainable Environment Research, 30(1), 1-11.

Akar, S. T., & Uysal, R. (2010). Untreated clay with high adsorption capacity for effective removal of CI Acid Red 88 from aqueous solutions: batch and dynamic flow mode studies. Chemical Engineering Journal, 162(2), 591-598.

Almoisheer, N., Alseroury, F. A., Kumar, R., Almeelbi, T., & Barakat, M. A. (2019). Synthesis of graphene oxide/silica/carbon nanotubes composite for removal of dyes from wastewater. Earth Systems and Environment, 3(3), 651-659.

Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280, 124518.

Balarak, D., Pirdadeh, F., & Mahdavi, Y. (2015). Biosorption of Acid Red 88 dyes using dried Lemna minor biomass. Journal of Science, Technology & Environment Informatics, 1(02), 81-90.

Belachew, N., & Bekele, G. (2020). Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon, 12(3), 603-612.

Bhatti, H. N., Safa, Y., Yakout, S. M., Shair, O. H., Iqbal, M., & Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. International journal of biological macromolecules, 150, 861-870.

Chaker, H., Ameur, N., Saidi-Bendahou, K., Djennas, M., & Fourmentin, S. (2021). Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. Journal of Environmental Chemical Engineering, 9(1), 104584.

Chen, H., & Zhao, J. (2009). Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption, 15(4), 381-389.

Chen, L., Jiang, X., Xie, R., Zhang, Y., Jin, Y., & Jiang, W. (2020). A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88. Separation and Purification Technology, 250, 117232.

Dikmen, S., Gunay, A., Ersoy, B., & Erol, I. (2015). Determination of equilibrium, kinetic and thermodynamic parameters of acid red 88 adsorption onto montmorillonitic clay. Environmental Engineering and Management Journal, 14(5), 1097-1110.

Dong, S., & Wang, Y. (2016). Removal of acid red 88 by a magnetic graphene oxide/cationic hydrogel nanocomposite from aqueous solutions: Adsorption behaviour and mechanism. RSC Advances, 6(68), 63922-63932.

Fawzy, M., Nasr, M., Nagy, H., & Helmi, S. (2018). Artificial intelligence and regression analysis for Cd (II) ion biosorption from aqueous solution by Gossypium barbadense waste. Environmental Science and Pollution Research, 25(6), 5875-5888.

Feng, Q., Gao, B., Yue, Q., & Guo, K. (2021). Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: Comparison with commercial lignin and coagulants. Chemosphere, 262, 128416.

Gholizadeh, A. M., Zarei, M., Ebratkhahan, M., Hasanzadeh, A., & Vafaei, F. (2020). Removal of Phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process. Journal of Environmental Management, 254, 109802.

Hasan, M. M., Shenashen, M. A., Hasan, M. N., Znad, H., Salman, M. S., & Awual, M. R. (2021). Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. Journal of Molecular Liquids, 323, 114587.

Joseph, J., Radhakrishnan, R. C., Johnson, J. K., Joy, S. P., & Thomas, J. (2020). Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Materials Chemistry and Physics, 242, 122488.

Kabir, S. M., Cueto, R., Balamurugan, S., Romeo, L. D., Kuttruff, J. T., Marx, B. D., & Negulescu, I. I. (2019). Removal of acid dyes from textile wastewaters using fish scales by absorption process. Clean Technologies, 1(1), 311-324.

Khan, M. I. (2020). Adsorption of methylene blue onto natural Saudi Red Clay: isotherms, kinetics and thermodynamic studies. Materials Research Express, 7(5), 055507.

Kuang, Y., Zhang, X., & Zhou, S. (2020). Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water, 12(2), 587.

Kumi, A. G., Ibrahim, M. G., Fujii, M., & Nasr, M. (2020). Synthesis of sludge-derived biochar modified with eggshell waste for monoethylene glycol removal from aqueous solutions. SN Applied Sciences, 2(10), 1-12.

Li, P., Gao, B., Li, A., & Yang, H. (2020). Evaluation of the selective adsorption of silica-sand/anionized-starch composite for removal of dyes and Cupper (II) from their aqueous mixtures. International Journal of Biological Macromolecules, 149, 1285-1293.

Liu, H., Zhang, J., Lu, M., Liang, L., Zhang, H., & Wei, J. (2020). Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chemical Engineering Journal, 387, 124202.

Liu, Q., Li, Y., Chen, H., Lu, J., Yu, G., Möslang, M., & Zhou, Y. (2020). Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. Journal of Hazardous Materials, 382, 121040.

Mcyotto, F., Wei, Q., Macharia, D. K., Huang, M., Shen, C., & Chow, C. W. (2021). Effect of dye structure on colour removal efficiency by coagulation. Chemical Engineering Journal, 405, 126674.

Melnyk, I. V., Tomina, V. V., Stolyarchuk, N. V., Seisenbaeva, G. A., & Kessler, V. G. (2021). Organic dyes (acid red, fluorescein, methylene blue) and copper (II) adsorption on amino silica spherical particles with tailored surface hydrophobicity and porosity. Journal of Molecular Liquids, 336, 116301.

Modirshahla, N., & Behnajady, M., & Shamel, A., & Eskandari, H. (2010). Sorption Study of C.I. Acid Red 88 From Aqueous Solutions onto Sawdust. Journal of Physical and Theoretical Chemistry, 7(2), 77-81.

Mukhlish, M. B., Khan, M. R., Islam, M. S., Nazir, M. I., Snigdha, J. S., Akter, R., & Ahmad, H. (2020). Decolorization of Reactive Dyes from Aqueous Solution Using Combined Coagulation-Flocculation and Photochemical Oxidation (UV/H₂O₂). Sustainable Chemical Engineering, 51-61.

Munjur, H. M., Hasan, M. N., Awual, M. R., Islam, M. M., Shenashen, M. A., & Iqbal, J. (2020). Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. Journal of Molecular Liquids, 319, 114356.

Paz, A., Carballo, J., Pérez, M. J., & Domínguez, J. M. (2017). Biological treatment of model dyes and textile wastewaters. Chemosphere, 181, 168-177.

Saad, M. S., Balasubramaniam, L., Wirzal, M. D. H., Abd Halim, N. S., Bilad, M. R., Md Nordin, N. A. H., ... & Ramli, F. N. (2020). Integrated Membrane–Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. Membranes, 10(8), 184.

Semiz, L. (2020). Removal of reactive black 5 from wastewater by membrane filtration. Polymer Bulletin, 77(6), 3047-3059.

Sharma, A., Syed, Z., Brighu, U., Gupta, A. B., & Ram, C. (2019). Adsorption of textile wastewater on alkali-activated sand. Journal of cleaner production, 220, 23-32.

Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29, 100804.

Singh, H., Chauhan, G., Jain, A. K., & Sharma, S. K. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 5(1), 122-135.

Sirajudheen, P., Karthikeyan, P., Vigneshwaran, S., & Meenakshi, S. (2020). Synthesis and characterization of La (III) supported carboxymethylcellulose-clay composite for toxic dyes removal: Evaluation of adsorption kinetics, isotherms and thermodynamics. International journal of biological macromolecules, 161, 1117-1126.

Sarkar, K., Banerjee, S. L., & Kundu, P. P. (2012). Removal of anionic dye in acid solution by self crosslinked insoluble dendronized chitosan. Hydrol Current Res, 3(133), 2.

Suganya, S., Saravanan, A., & Ravikumar, C. (2017). Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: theoretical and experimental analysis. Environmental Toxicology and Pharmacology, 50, 45-57.

Thirumoorthy, K., & Krishna, S. K. (2020). Removal of cationic and anionic dyes from aqueous phase by Ball clay–Manganese dioxide nanocomposites. Journal of Environmental Chemical Engineering, 8(1), 103582.

Tunali Akar, S., Alp, T., & Yilmazer, D. (2013). Enhanced adsorption of Acid Red 88 by an excellent adsorbent prepared from alunite. Journal of Chemical Technology & Biotechnology, 88(2), 293-304.

Wang, J., Yao, J., Wang, L., Xue, Q., Hu, Z., & Pan, B. (2020). Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Separation and Purification Technology, 230, 115851.

Wang, Q., Liang, L., Tian, G., Mao, Q., & Meng, X. (2020). Adsorption of azo dye malachite green onto rice wine lees: kinetic and adsorption isotherms. Nature Environment and Pollution Technology, 19(2), 563-570.

Wang, S., Gao, H., Fang, L., Hu, Q., Sun, G., Chen, X., Yu, C., Tang, S., Yu, X., Zhao, X., Guangzhuang, S., & Yang, H. (2021). Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chemical Engineering Journal Advances, 6, 100089.

Wang, Y., Geng, Q., Yang, J., Liu, Y., & Liu, C. (2020). Hybrid System of Flocculation–Photocatalysis for the Decolorization of Crystal Violet, Reactive Red X-3B, and Acid Orange II Dye. ACS Omega, 5(48), 31137-31145.

Xia, L., Zhou, S., Zhang, C., Fu, Z., Wang, A., Zhang, Q., Wang, Y., Liu, X., Wang, X., & Xu, W. (2020). Environment-friendly Juncus effusus-based adsorbent with a three-dimensional network structure for highly efficient removal of dyes from wastewater. Journal of Cleaner Production, 259, 120812.

Yusof, N. H., Foo, K. Y., Hameed, B. H., Hussin, M. H., Lee, H. K., & Sabar, S. (2020). One-step synthesis of chitosan-polyethyleneimine with calcium chloride as effective adsorbent for Acid Red 88 removal. International journal of biological macromolecules, 157, 648-658.

Zhu, H. Y., Jiang, R., & Xiao, L. (2010). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied clay science, 48(3), 522-526.

Published
22 February, 2022
How to Cite
Dadebo, D., & Obura, D. (2022). Removal of Acid Red 88 from an Aqueous Solution Using Kaolinite Clay by Adsorption Process. East African Journal of Engineering, 5(1), 57-71. https://doi.org/10.37284/eaje.5.1.561