Stress Tolerance of African Catfish (Clarias gariepinus, Burchell, 1822) Larvae Fed on Spirulina platensis or Eisenia fetida in Partial Replacement of Caridina nilotica in Formulated Diets

  • Callen Nyang’ate Onura University of Nairobi
  • Agnes Wangui Muthumbi, PhD University of Nairobi
  • James Gordon James, PhD University of Nairobi
  • Virginia Wangechi Wang’ondu, PhD University of Nairobi
Keywords: Clarias Gariepinus, Larvae, Stress Test, Mortality, Ammonia Tolerance
Share Article:


Enhanced growth and survival indicate a quality diet important in the production of quality fish larvae. Diet’s quality heavily depends on the quality of its protein which varies with inclusion levels and sources. This Influences stress responses and compromises wellbeing larvae due to diets suboptimal provision of nutritional requirements. However, there exists a knowledge gap on the performance of different proteins beyond growth and survival. The objective of this study was to determine the effects of partially replacing Caridina nilotica with Spirulina platensis or Eisenia fetida on stress tolerance of Clarias gariepinus larvae. This was conducted in 0.0, 0.3, 0.5, 0.7mg/l ammonia concentrations at 28°C and pH 7 within 24-hours using four- and six-weeks old larvae. The larvae were fed on formulated diets and a control at 10% body weight, five times a day. All larvae exposed to 0.7mg/l ammonia concentration died irrespective of the diet fed. A combination of 50%Caridina nilotica and 50%Eisenia fetida fed larvae posted low (p<0.001) total mortality of 78% and 52% in 0.5mg/l, stress indices of 457.3 and 342 and, took the longest time of 12.67 and 18.67-hours for half the number of larvae exposed to die in 0.7mg/l ammonia respectively for four- and six-week-old larvae. However, larvae fed on 50%Spirulina platensis and 50%Caridina nilotica posted higher (p<0.001) total mortality of 97% and 73% in 0.5mg/l, stress indices of 574.3 and 476.3 and, shortest time of 8 and 10.17-hours for half the number of 4- and 6-weeks old (respectively) larvae exposed to 0.7mg/l ammonia to die. Protein source influenced stress tolerance with Eisenia fetida diets enhancing better larvae tolerance to ammonia compared to Spirulina platensis and Caridina nilotica (control) diets. Caridina nilotica could be replaced by Eisenia fetida up to 50% and 25% by Spirulina platensis to enhance Clarias gariepinus larvae tolerance to ammonia stress.


Download data is not yet available.


Abaho, I., Bwanika, G., Walekhwa, P., Arinaitwe, A. V. I., & Kwetegyeka, J. (2016). Fatty acid profiles and growth of African catfish (Clarias gariepinus, Burchell, 1822) larvae fed on freshwater rotifer (Brachionus calyciflorus) and Artemia as live starter feeds. Int. J. Fisheries & Aquatic Studies, 4(1), 189-196.

Abreu, J. S. D., Esteves, F. R., & Urbinati, E. C. (2012). Stress in pacu exposed to ammonia in water. Revista Brasileira de Zootecnia, 41(7), 1555-1560.

Alexandrova, U., Kotelnikov, A., Kotelnikova, S., Firsova, A., & Kuzov, A. (2021). Early ontogeny of Clarias gariepinus and its features under artificial cultivation at different temperature conditions. In IOP Conference Series: Earth and Environmental Science (Vol. 937, No. 3, p. 032035). IOP Publishing

Aragão, C., Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., & Engrola, S. (2022). Alternative Proteins for Fish Diets: Implications beyond Growth. Animals, 12(9), 1211.

Aristizabal, E., Suárez, J., Vega, A., & Bargas, R. (2009). Egg and larval quality assessment in the Argentinean red porgy (Pagrus pagrus). Aquaculture, 287(3-4), 329-334.

Audu, B. S., Omirinde, J. O., Gosomji, I. J., & Wazhi, P. E. (2017). Histopathological changes in the gill and liver of Clarias gariepinus exposed to acute concentrations of Vernonia amygdalina. Animal Research International, 14(1), 2576-2587.

Awed, E. M., Sadek, K. M., Soliman, M. K., Khalil, R. H., Younis, E. M., Abdel-Warith, A. W. A. & Abdel-Latif, H. M. (2020). Spirulina platensis alleviated the Oxidative Damage in the Gills, Liver, and Kidney Organs of Nile Tilapia Intoxicated with Sodium Sulphate. Animals, 10(12), 2423.

Baßmann, B., Brenner, M., & Palm, H. W. (2017). Stress and welfare of African catfish (Clarias gariepinus Burchell, 1822) in a coupled aquaponic system. Water, 9(7), 504.

Boerrigter, J. G. J. (2015). Fish welfare: adaptive capacity of farmed fish (Doctoral dissertation, Radboud University Nijmegen).

Boyd, C. E. (2017). General relationship between water quality and aquaculture performance in ponds. In Fish diseases (pp. 147-166). Academic Press.

Conceição, L. E., Aragão, C., Dias, J., Costas, B., Terova, G., Martins, C., & Tort, L. (2012). Dietary nitrogen and fish welfare. Fish Physiology and Biochemistry, 38(1), 119-141.

Chepkirui‐Boit, V., Ngugi, C. C., Bowman, J., Oyoo‐Okoth, E., Rasowo, J., Mugo‐Bundi, J., & Cherop, L. (2011). Growth performance, survival, feed utilization and nutrient utilization of African catfish (Clarias gariepinus) larvae co‐fed Artemia and a micro‐diet containing freshwater atyid shrimp (Caridina nilotica) during weaning. Aquaculture Nutrition, 17(2), e82-e89.

Chithambaran, S., Abdullah, E. A., & Al Deen, S. (2015). Tolerance and Mortality of Gambusia affinis to Acute Ammonia and Nitrite Exposure at Various Salinities. Arab Gulf Journal of Scientific Research, 33.

Dhert, P., Lavens, P., & Sorgeloos, P. (1993). A simple test for quality evaluation of cultured fry of marine fish. Mededelingen-Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 57, 2135-2135

Diraman, H., Koru, E., & Dibeklioglu, H. (2009). Fatty acid profile of Spirulina platensis used as a food supplement.

Ebm, N., Guo, F., Brett, M. T., Bunn, S. E., & Kainz, M. J. (2021). Polyunsaturated fatty acids in fish tissues more closely resemble algal than terrestrial diet sources. Hydrobiologia, 848(2), 371-383.

Eddy, F. B., Mittal, A. K., & Munshi, J. S. (1999). Effects of ammonia on fish and responses of the ionic regulatory system. Water/Air transitions in Biology, 281-292.

Fletcher, T. C. (1997). Dietary effects on stress and health. Fish stress and health in aquaculture, 62, 223-246.

Francis-Floyd, R., Watson, C., Petty, D., & Pouder, D. B. (2009). Ammonia in aquatic systems. EDIS, 2009(6)

Hasanein, S., Saleh, N. E., Saleh, N. E., El-Sayed, H., & M Helal, A. (2018). The Effect of dietary supplementation of Spirulina platensis and Chlorella vulgaris algae on the growth and disease resistance of the sea bass (Dicentrarchus labrax). Egyptian Journal of Aquatic Biology and Fisheries, 22(4), 249-262.

Irina, R. (2014). Biomarkers for Stress in Fish Embryos and Larvae.IPC3 Congress Organizing Committees. Published by CRC Press. PP 220. ISBN 9781482207385.

Ip, Y. K., & Chew, S. F. (2010). Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in physiology, 1, 134.

Komugisha, B., & Rajts, F. (2021). Better management practices for African catfish (Clarias gariepinus) spawning and fingerling production in the Democratic Republic of Congo.

Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., & Khatoon, Z. (2020). Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments. Scientific reports, 10(1), 1-15

Kreutz, L. C., Barcellos, L. J. G., Silva, T. O., Anziliero, D., Martins, D., Lorenson, M., ... & Silva, L. B. D. (2008). Acute toxicity test of agricultural pesticides on silver catfish (Rhamdia quelen) fingerlings. Ciência Rural, 38, 1050-1055.

Kumlu, M., Beksari, A., Eroldoğan, O. T., Yılmaz, H. A., Sarıipek, M., Kınay, E., & Turchini, G. M. (2018). DHA enrichment of the red earthworm Eisenia fetida for improving its potential as dietary source for aquaculture. Aquaculture, 496, 10-18.

Kumlu, M., Beksari, A., Yilmaz, H. A., Sariipek, M., Kinay, E., Turchini, G. M., & Eroldogan, O. T. (2021). n-3 LC-PUFA Enrichment Protocol for Red Earthworm, Eisenia fetida: A Cheap and Sustainable Method. Turkish Journal of Fisheries and Aquatic Sciences, 21(7), 333-346.

Levene, H., 1960. Robust tests for equality of variances. Contributions to probability and.

Statistics 1, 278–292.

Liang, M. Q., Lu, Q. K., Qian, C., Zheng, K. K., & Wang, X. X. (2014). Effects of dietary n‐3 to n‐6 fatty acid ratios on spawning performance and larval quality in tongue sole C ynoglossus semilaevis. Aquaculture Nutrition, 20(1), 79-89.

Liu, F., Li, S., Yu, Y., Sun, M., Xiang, J., & Li, F. (2020). Effects of ammonia stress on the hemocytes of the Pacific white shrimp Litopenaeus vannamei. Chemosphere, 239, 124759.

Luz, R. K., Ribeiro, P. A. P., Ikeda, A. L., Santos, A. E. H., Melillo Filho, R., Turra, E. M., & Teixeira, E. D. A. (2012). Performance and stress resistance of Nile tilapias fed different crude protein levels. Revista brasileira de zootecnia, 41(2), 457-461.

Mejri, S. C., Tremblay, R., Audet, C., Wills, P. S., & Riche, M. (2021). Essential fatty acid requirements in tropical and cold-water marine fish larvae and juveniles. Frontiers in Marine Science, 8, 680003.

Mesa‐Rodriguez, A., Hernández‐Cruz, C. M., Betancor, M. B., Fernández‐Palacios, H., Izquierdo, M. S., & Roo, J. (2018). Effect of increasing docosahexaenoic acid content in weaning diets on survival, growth and skeletal anomalies of longfin yellowtail (Seriola rivoliana, Valenciennes 1833). Aquaculture Research, 49(3), 1200-1209.

Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J., & Izquierdo, M. S. (2003). Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture, 225(1-4), 353-370.

Munguti, J., Odame, H., Kirimi, J., Obiero, K., Ogello, E., & Liti, D. (2021). Fish feeds and feed management practices in the Kenyan aquaculture sector: Challenges and opportunities. Aquatic Ecosystem Health & Management, 24(1), 82-89.

Musyoka, S. N., Liti, D. M., Ogello, E., & Waidbacher, H. (2019). Utilization of the earthworm, Eisenia fetida (Savigny, 1826) as an alternative protein source in fish feeds processing: A review. Aquaculture Research, 50(9), 2301-2315

Mhadhbi, L., Boumaiza, M., & Beiras, R. (2010). A standard ecotoxicological bioassay using early life stages of the marine fish Psetta maxima. Aquatic living resources, 23(2), 209-216

Ngugi, C. C., Bowman, J. R., & Omolo, B. (2007). A new guide to fish farming in Kenya. Aquaculture CRSP Management Office College of Agricultural Science, Oregon State University 418 Snell Hall Corvallis, Oregon 97331–1643 USA. 978-0-9798658-0-0. Pp 50-53

Nguyen Thi Hong, L., & Janssen, C. (2002). Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): comparative sensitivity of endpoints. Archives of environmental contamination and toxicology, 42(2), 256-26

Nyangate, C., James, J., Wangui, A., Wangechi, V., & Auma, D. (2022). Performance of African catfish Clarias gariepinus larvae fed on formulated diets containing Spirulina platensis and Eisenia fetida. East African Journal of Science, Technology and Innovation, 3(2).

Oliva‐Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of fish diseases, 35(2), 83-108.

Palacios, E., & Racotta, I. S. (2007). Salinity stress test and its relation to future performance and different physiological responses in shrimp postlarvae. Aquaculture, 268(1-4), 123-135.

Racotta, I. S., Palacios, E., & Ibarra, A. M. (2003). Shrimp larval quality in relation to broodstock condition. Aquaculture, 227(1-4), 107-130.

Raji, A. A., Alaba, P. A., Yusuf, H., Bakar, N. H. A., Taufek, N. M., Muin, H., ... & Razak, S. A. (2018). Fishmeal replacement with Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Research in veterinary science, 119, 67-75.

Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine pollution bulletin, 45(1-12), 17-23.

Ramaswamy, B., Kumar, B. T., Doddamani, P. L., Panda, K., & Ramesh, K. S. (2013). Dietary protein requirement of stunted fingerlings of the Indian major carp, Catla catla (Hamilton) during grow-out phase. Indian J. Fish, 60(4), 87-91.

Rawling, M., Merrifield, D., Kühlwein, H., Snellgrove, D., Gioacchini, G., Carnevali, O.,Davies, S., 2014. Dietary modulation of immune response and related gene expression profiles in mirror carp (Cyprinus carpio) using selected exotic feed ingredients. Aquaculture, 418, 177-184.

Rehman, S., Gora, A. H., Ahmad, I., & Rasool, S. I. (2017). Stress in aquaculture hatcheries: source, impact and mitigation. International Journal of Current Microbiology and Applied Sciences, 6(10), 3030-3045.

Rufchaei, R., Hoseinifar, S. H., Nedaei, S., Bagheri, T., Ashouri, G., & Van Doan, H. (2019). Non-specific immune responses, stress resistance and growth performance of Caspian roach (Rutilus caspicus) fed diet supplemented with earthworm (Eisenia foetida) extract. Aquaculture, 511, 734275.

Sahena, F., Zaidul, I. S. M., Jinap, S., Saari, N., Jahurul, H. A., Abbas, K. A., & Norulaini, N. A. (2009). PUFAs in fish: extraction, fractionation, importance in health. Comprehensive Reviews in food science and food safety, 8(2), 59-74.

Samaras, A., & Pavlidis, M. (2020). A Modified Protocol for Cortisol Analysis in Zebrafish (Danio rerio), Individual Embryos, and Larvae. Zebrafish, 17(6), 394-399.

Samocha, T. M., Guajardo, H., Lawrence, A. L., Castille, F. L., Speed, M., McKee, D. A., & Page, K. I. (1998). A simple stress test for Penaeus vannamei postlarvae. Aquaculture, 165(3-4), 233-242.

Sanderson, L. A., Wright, P. A., Robinson, J. W., Ballantyne, J. S., & Bernier, N. J. (2010). Inhibition of glutamine synthetase during ammonia exposure in rainbow trout indicates a high reserve capacity to prevent brain ammonia toxicity. Journal of Experimental Biology, 213(13), 2343-2353.

Sayed, A. E. D. H., & Authman, M. M. (2018). The protective role of Spirulina platensis to alleviate the Sodium dodecyl sulfate toxic effects in the catfish Clarias gariepinus (Burchell, 1822). Ecotoxicology and environmental safety, 163, 136-144.

Schram, E., Roques, J. A., Abbink, W., Spanings, T., De Vries, P., Bierman, S., & Flik, G. (2010). The impact of elevated water ammonia concentration on physiology, growth and feed intake of African catfish (Clarias gariepinus). Aquaculture, 306(1-4), 108-115

Schreck, C. B., & Tort, L. (2016). The concept of stress in fish. In Fish physiology (Vol. 35, pp. 1-34). Academic Press.

Stevens, C. H., Croft, D. P., Paull, G. C., & Tyler, C. R. (2017). Stress and welfare in ornamental fishes: what can be learned from aquaculture? Journal of fish biology, 91(2), 409-428.

Sushma, A. K., & Sharma, P. (2021). Therapeutic and Nutritional aspects of Spirulina in Aquaculture. Journal of Agriculture and Aquaculture, 3(1).

Tacon, A. G. J., Stafford, E. A., & Edwards, C. A. (1983). A preliminary investigation of the nutritive value of three terrestrial lumbricid worms for rainbow trout. Aquaculture, 35, 187-199.

Takeuchi, T. (2014). Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: a review. Fisheries Science, 80(3), 389-403.

Terjesen, B. F., Chadwick, T. D., Verreth, J. A., Rønnestad, I., & Wright, P. A. (2001). Pathways for urea production during early life of an air-breathing teleost, the African catfish Clarias gariepinus Burchell. Journal of Experimental Biology, 204(12), 2155-2165.

Turner, L. A., & Bucking, C. (2019). The role of intestinal bacteria in the ammonia detoxification ability of teleost fish. Journal of Experimental Biology, 222(24), jeb 209882

Qi, X. Z., Xue, M. Y., Yang, S. B., Zha, J. W., Wang, G. X., & Ling, F. (2017). Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus). Fish & Shellfish Immunology, 70, 485-492.

Wang, S., Li, X., Zhang, M., Jiang, H., Wang, R., Qian, Y., & Li, M. (2021). Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicology and Environmental Safety, 227, 112932.

Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological reviews, 77(3), 591-625.

Zar, J.H., 1999. Biostatistical Analysis. Prentice–Hall, Upper Saddle River, New Jersey, USA.

Zimmer, A. M., Wright, P. A., & Wood, C. M. (2017). Ammonia and urea handling by early life stages of fishes. Journal of Experimental Biology, 220(21), 3843-3855.

19 September, 2022
How to Cite
Onura, C., Muthumbi, A., James, J., & Wang’ondu, V. (2022). Stress Tolerance of African Catfish (Clarias gariepinus, Burchell, 1822) Larvae Fed on Spirulina platensis or Eisenia fetida in Partial Replacement of Caridina nilotica in Formulated Diets. East African Journal of Agriculture and Biotechnology, 5(1), 195-212.