The Effect of Concentrate Supplementation to Lactating Toggenburg Dairy Goats on Milk Quality Based on the Milk Fatty Acid Profile
Abstract
Dairy goats are an important source of nutritious milk for humans. Goat milk has nutritional and therapeutic properties beneficial to humans, usually from polyunsaturated fatty acids. The main basal feed for dairy goats in Kenya is Napier grass (Pennisetum purpureum Schumach), but it is low in nutrients, and, therefore, it needs energy and protein supplementation to enhance milk production. Dairy meal is widely used by most small-scale farmers as the main protein and energy supplement for dairy animals, especially dairy cattle. However, the relevant information on the appropriate amount of dairy meal to supplement the basal diet to feed dairy goats, and the effect of the supplement on beneficial fatty acids in milk, is scarce in Kenya and therefore presents a critical knowledge gap. Therefore, a concentrate with a crude protein content of 160 gkg-1 DM and metabolizable energy content of 10 MJkg-1 DM was constituted to represent a standard dairy meal, and fed to lactating Toggenburg dairy goats fed on Napier grass basal diet, at supplementation levels of 0, 150, 300 and 450 g/goat day-1 in a 4 x 4 Latin square design. The basal and total dry matter intake by the goats were 0.864-0.985 and 0.985-1.307 kg DM/goat day-1, respectively, with a milk production of 306.8-476.9 mL/goat day-1. The milk produced had a lower concentration of saturated fatty acids, ω-6: ω-3 ratio, atherogenecity index and thrombogenecity index; and a higher concentration of polyunsaturated fatty acids than milk from unsupplemented goats. It was concluded that farmers feed the energy and protein concentrate at 300 g/goat day-1, as it resulted in the highest daily milk production, and the milk produced is healthier for the human consumer.
Downloads
References
Anindo, D.O., & Potter, H.L. (1994). Seasonal variation in productivity and nutritive value of Napier grass at Muguga, Kenya. E. Afr. Agric. For. J., 59: 177-185.
AOAC. (1999). Official Methods of Analysis of AOAC International, Association of Official Analytical Chemists, 16th Edition, 5th revision, Gaithersburg, M.D. https://www.abebooks.com/Official-Methods-Analysis-AOAC-International-16th/16350569637/bd.
Aziz, M.A. (2010). Present status of the world goat populations and their productivity. Lohmann Information, 45: 42-52.
Bauman, D.E., & Griinari, J.M. (2003). Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr., 23: 203-227.
Bauman, D.E., & Lock, A.L. (2010). Milk fatty acid composition: Challenges and opportunities related to human health. In: XXVI World Buiatrix Congress, Santiago, Chile, 2780289.
Biancarosa, I., Espe, M., Bruckner, C. G., Heesch, S., Liland, N., Waagbo, R., Torstensen, B., & Lock, E. J. (2017). Amino acids composition, protein content and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. J. Appl. Phycol., 29 (2): 1001-1009.
Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8): 911–917.
Borgaonkar, K., & Patil, R. (2022). Review on omega-3 fatty acid in relation to DHA Docosahexanoic acid. J. M. D. S. R., 9 (5): 37-44.
Chatterjee, A., & Walli, T.K. (2003). Effect of formaldehyde treatment on effective protein degradability and in vitro post ruminal digestibility of mustard cake. I. J. A. N., 20: 143-148.
Chilliard, Y., & Ferlay, A. (2004). Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev., 44: 467-492.
Chilliard, Y., Rouel, J., & Leroux, C. (2006). Goat’s α-s 1 casein genotype influences its milk fatty acids composition and ∆-9 desaturation ratios. Animal Feed Science and Technology, 131: 474-487.
Clark, S., Barbara, M., & Garcia, M. (2017). A 100-Year Review: Advances in goat milk research. J. Dairy Sci., 100 (12): 10026-10044.
Cook, T. (2010). Benefits of goat milk vs cow milk. https://mtcapra.com/2010/08/20/benefits-of-goat-milk-vs-cow-milk/.
CSIRO. (2007). Nutrient Requirements of Domesticated Ruminants. National Library of Australia Cataloguing-in-Publication entry. Freer, M. (Principal Editor), Dove, H. and J. V. Nolan, J.V. (eds). Commonwealth Scientific and Industrial Research Organisation. CSIRO Publishing, 150 Oxford Street (PO Box 1139), Collingwood VIC 3066, Australia. ISBN 9780643092624. http://www.do.ufgd.edu.br/fernandojunior/arquivos/valornutritivo/CSIRO – Nutrient Requirement of Domesticated Ruminants 2007.pdf.
CTA. (2007). Rearing Dairy Goats. Technical Centre for Agricultural and Rural Cooperation. CTA Practical Guide Series, No. 1. ISSN 1873-8206.
Delve, H., Vetti, I., Naess-Andresen, C.F., Rukke, E., Vegarud, G., & Ekeberg, D. (2012). A comparative study of fatty acid profiles in ruminant and non-ruminant milk. Eur. J. Lipid Sci. Technol., 114: 1036-1043.
Elmhadi, M. E., Ali, D.K., Khogali, M.K., & Wang, H. (2022). Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Anim. Nutr., 10: 148–155.
Enemark, J.M.D., Jørgensen, R.J., & Enemark, P.S. (2002). Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: A review. Veterinarija Ir Zootechnika T., 20 (42). http://www.vetzoo.lsmuni.lt/data/vols/2002/pdf/enemark.pdf.
FAO. (2011). Dairy Development in Kenya. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/docrep/013/al745e00.pdf.
Greppi, G.F., Roncada, P., & Fortin, R. (2008). Protein Components of Goat’s Milk. In: Dairy Goats Feeding and Nutrition. A. Cannas and G. Pulina (eds). CAB International. Pp 71-94.
Haenlein, G.F.W. (2004). Goat milk in human nutrition. Small Rumin. Res., 51 (2): 155-163.
Idamokoro, E.M., Muchenje, V., Afolayan, A.J., & Hugo, A. (2019). Comparative fatty-acid profile and atherogenicity index of milk from free grazing Nguni, Boer and non-descript goats in South Africa. Pastor. Res. Policy Pract., 9: 4. http://doi.org/10.1186/s13570-019-0138-8.
IRC. (2013). Institutional Review Committee. Institute of Primate Research, WHO Collaborating Centre, Box 24481-00502, Nairobi, Kenya.
Jaetzold, R., Schmidt, H., Hornetz, B., & Shisanya, C. (2006). The Farm Management Handbook of Kenya Vol. II/B, Central Kenya, Ministry of Agriculture, Kenya and the German Agency for Technical Co-operation (GTZ).
Kahi, A. K., & Wasike, C. B. (2019). Dairy goat production in sub-Saharan Africa: Current status, constraints and prospects for research and development. Asian-Austr. J. Anim. Sci., 32 (8): 1266-1274. https://doi.org/10.5713/ajas.19.0377.
Kariuki, J. N. (1998). The potential of improving Napier grass in smallholders’ dairy farms in Kenya. PhD Thesis, Wageningen Agricultural University, The Netherlands.
Ketto, I.A., Massawe, I., & Kifaro, G.C. (2014). Effects of supplementation, birth type, age and stage of lactation on milk yield and composition of Norwegian x Small East African goats in Morogoro, Tanzania. Livest. Res. Rural Dev., Vol 26, Article No. 234.
Kholif, A.E. (2020). Some aspects of recent researches on feeding dairy goats. Egyptian Journal of Animal Production, 57 Suppl. Issue: 87-91.
Kinyanjui, A., Murage, A., & Mbugua, D. (2008). Socio-economic Effects of Dairy goat Production in Kenya. KALRO-Naivasha. https://www.researchgate.net/publication/264849503_SOCIO_ECONOMIC_EFFECTS_OF_DAIRY_GOAT_PRODUCTION_IN_KENYA
Kiura, J.N., Guliye, A.Y., Migwi, P.K., & Ondiek, J.O. (2020). Performance and genotypes of dairy goats in Kenya: Lessons learnt and the need to move beyond donor introductions. JAST. A, 10: 128-137.
Komprej, A., Gorjanc, G., Kompan, D., & Kovac, M. (2012). Lactation curves for milk yield, fat, and protein content in Slovenian dairy sheep. Czech J. Anim. Sci., 57: 231-239.
Leng, R. A., Choo, B. S., & Arreaza, C. (2020). Practical technologies to optimize feed utilisation by ruminants. Legume trees and other fodder trees as protein sources for livestock. http://www.fao.org/3/3/T0632E06.htm.
Li, D., Bode, O., Drummond, H., & Sinclair, A.J. (2003). Omega-3 (n-3) fatty acids. In: Lipids for Functional Foods and Nutraceuticals. (Gunstone, F.D. ed.), Oily Press: Bridgwater, UK. Pp. 225-263.
Lopez, A., Vasconi, M., Moretti, V., & Bellagamba, F. (2019). Fatty acid profile in goat milk from high- and low-input conventional and organic systems. Animals, 9: 452. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680990/pdf/animals-09-00452.pdf.
Markiewicz-Keszycka, M., Czyzak-Runowska, G., Lipinska, P., & Wojtowski, J. (2013). Fatty acid profile of milk – A review. Bull. Vet. Inst. Pulawy, 57: 135- 139. https://www.Downloads/Markiewicz-KeszyckaPulawy.pdf.
Mierlita, D. (2023). Influence of feeding on different types of pasture on the fatty acid profile and health indices of goat milk. S. Afr. J. Anim. Sci., 52 (5). http://dx.doi.org/10.4314/sajas.v51i5.08.
Min, B.R., Hart, S.P., Sahlu, T., & Satter, D. (2005). The effect of diets on milk production and composition, and on lactation curves in pastured dairy goats. J. Dairy Sci., 88: 2604-2615.
Minson, D.J. (1981). Nutritional differences between tropical and temperate pastures. In: Grazing Animals, World Animal Science (Mooley, W. ed.). Elsevier Scientific Publishing Company, Amsterdam. pp. 143-157.
Minson D. J. (1988). The chemical composition and nutritive value of tropical legumes. In: Tropical Forage Legumes, FAO Plant Production and Protection Series, No. 2, Food and Agricultural Organisation of the United Nations, Rome. pp. 185-193.
MOLD. (2011). Ministry of Livestock and Fisheries Development. Annual Report for 2010, Nairobi, Kenya.
Mollica, M. P., Trinchese, G., Cimmino, F., Penna, E., Cavaliere, G., Tudisco, R., Musco, N., Manca, C., Catapano, A., Monda, M., Bergamo, P., Banni, S., Infascelli, F., Lombardi, P., & Crispino, M. (2021). Milk fatty acid profiles in different animal species: Focus on the potential effect of selected PUFAs on metabolism and brain functions. Nutrients, 13: 111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066999/pdf/nutrients013-01111.pdf.
Muia, J. M. K., Tamminga, S., Mbugua, P. N., & Kariuki, J.N. (2000). The nutritive value of Napier grass (Pennisetum purpureum) and its potential for milk production with or without supplementation: A review. Trop. Sci., 40: 109-131.
Njarui, D.M.G., Mureithi, J.G., Wandera, F.P., & Muinga, R.W. (2003). Evaluation of four forage legumes as supplementary feed for Kenya Dual Purpose Goat in the semi-arid region of eastern Kenya. Trop. Subtrop. Agroecosystems, 3: 65-71.
Novotna, K., Ptacek, M., Fantovia, M., Nohejlova, L., Stadnik, L., Okrouhla, M., & Petak, Z. (2019). Impact of concentrate level and stage of lactation on fatty acid composition in goat milk. Sci. Agric. Bohem., 50 (3): 171-175.
NRC. (1981). Nutrient Requirements of Goats: Angora, Dairy and Meat Goats in Temperate and Tropical Countries. National Research Council. National Academy Press, Washington, DC.
NRC. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Research Council. The National Academies Press, Washington D.C.
Ogola, T.D.O., Nguyo, W.K., & Kosgey, I.S. (2010). Dairy goat production practices in Kenya: Implications for a breeding programme. Livest. Res. Rural Dev., 22: (1) paper no.16. http://www.lrrd.org/lrrd22/1/ogol22016cit.htm.
Otaru, S.M., Adamu, A.M., & Ehoche, O.W. (2020). Influence of levels of supplementary concentrate mixture on lactation performance of Red Sokoto does and the pre-weaning growth rate of their kids. Vet. Anim. Sci., 10: 100137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487418/pdf/main.pdf.
Pajor, F., Varkonyi, D., Dalmadi, I., Paskztorne-Huszar, K., Egerszegi, I., Penksza, K., Poti, P., & Bodnar, A. (2023). Changes in chemical composition and fatty acid profile of milk and cheese and sensory profile of milk via supplementation of goats’ diet with marine algae. Animals, 13: 2152. https://www.PMC.ncbi.nlm.nih.gov/articles/PMC10340010/pdf/animals-13-02152.pdf.
Park, Y. (2016). Impact of goat milk and milk products on human nutrition. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, CABI. https://www.researchgate.net/publication/273738041_Impact_of_goat_milk_and_milk_products_on_human_nutrition?enrichId=rgreq-db096a0f3c455ff83ff562f16777bd0e-XXX&enrichSource=Y292ZXJQYWdlOzI3MzczODA0MTtBUzozNzAzNjc2NTE2OTY2NDFAMTQ2NTMxMzkzNzc3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf.
Pfeuffer, M., & Schrezenmeir, J. (2000). Bioactive substances in milk with properties decreasing risk of cardiovascular disease. Br. J. Nutr., 85: 155-159.
Plarczyk, R., Wojcik, J., & Czerniak, P. (2015). Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci., 45: 30-38.
Poti, P., Pajor, F., Bodnar, A., Penksza, K., & Kole, P. (2015). Effects of micro- alga supplementation on goat and cow milk fatty acid composition. Chil. J. Agric. Res., 879, 259-263.
Preston, T.R. (1995). Tropical Animal Feeding. A Manual for Research Workers. FAO Animal Production and Health Paper 126. Food and Agriculture Organization of the United Nations (FAO). 2nd Edition. University of Agriculture and Forestry, Ho Chi Minh City, Viet Nam. ISBN 92-5-103758-2. www.fao.org/3/V9327E/V9327E00.htm.
Psota, T.L., Gebauer, S.K., & Kriss-Etheron, P. (2006). Dietary omega-3 fatty acids intake and cardiovascular risk. Am. J. Cardiol., 98 (suppl): 3i-18i. Elsevier.
Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Punsuvon, V., Vaithanomsat, P.V., & Tudsri, S. (2013). Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of Napier grass (Pennisetum purpureum Schumach.) harvested 3-monthly in Central Thailand, J. Sustain. Bioenergy Syst., 3: 107–112.
Rusdy, M. (2016). Elephant grass as forage for ruminant animals, Livest. Res. Rural Dev., 28 (4), http://www.lrrd.org/lrrd28/4/rusd28049. html.
SAS (Statistical Analysis Systems Institute). (2004). Guide for personal Computer version 9.2, Statistical Analysis Systems. Statistical Analysis Systems Institute Inc., Cary, NC.
Semenye, P.P., Fitzhugh, H.A., & Getz, W.R. (1992). Nutrition and management. In: Onfarm Research and Technology for Dual Purpose Goats (Semenye, P.P. and Hutchraft, T. eds.). Small Ruminant Collaborative Research Support Program, Kenya. National Pring Press ltd., Kisumu, Kenya. ISBN 9966-879-06-4. pp 71-98.
Simopoulos, A.P. (2002). The importance of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother., 56: 365-379.
Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 233: 674-688.
Su, H.M., Huang, M.C., Saad, N.M., Nathanielsz, P.W., & Brenna, J.T. (2001). Fetal baboons convert 18:3n to 22:6n-3 in vivo. A stable isotope tracer study. J. Lipid Res., 42: 581-586.
Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr., 3 (1): 1-7. Doi: 10.3945/an.111.000893. Epub 2012 Jan 5. PMID: 22332096; PMCID: PMC3262608, Accessed November 26, 2024.
Taipur, F.N., Bhanger, M.L., & Memon, N.N. (2009). Milk fatty acid composition of indigenous goats and ewe breeds from Sindh, Pakistan. J. Food Compos. Anal., 22: 59-64. https//doi.org/10.1016/j.jfca.2008.09.005.
Tolemariam, T., Prasad, S., & Walli, T.K. (2009). Effects of energy and bypass protein supplementation on feed intake, milk yield and composition of crossbred lactating goats. Ethiopian Journal of Animal Production, 9 (1): 145-157.
Tsiplakou, E., & Zervas, G. (2008). Comparative study between sheep and goats on rumenic acid and vaccenic acid in milk fat under the same dietary treatments. Livest. Sci., 119: 87-94. https://doi.org/10.1016/S0753-3322(02)00253-6.
Tudisco, R., Grossi, M., Addi, L., Musco, N., Cutrignelli, M. I., Calabro, S., & Infascelli, F. (2014). Fatty acid profile and Conjugated Linoleic Acid (CLA) content of goat milk: Influence of feeding system. J. Food Res., 3 (4). 2014. https://www.citeseerx.ist.psu.edu/document?repid=vep1&type=pdf&doi=9e0ac64c2bdc98823a1beeb27bc176e4cd63c662.
Ulbricht T.L.V., & Southgate D.A.T. (1991). Coronary heart disease: Seven dietary factors. Lancet, 338: 985-992.
Van Soest, P.J. (1982). Nutritional Ecology of the Ruminant. O & B books, Corvallis, Oregon, USA.
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides analyses in relation to animal nutrition. J. Dairy Sci., 74 (10): 3588-3597.
Volkmann, A., Rahmann, G. and Knaus, W. (2014). Fatty acid composition of goat milk produced under different feeding regimens and the impact on goat cheese. In: Building Organic Bridges (Rahmann, G. and Aksoy, U. eds.). Proceedings of the 4th ISOFAR Scientific Conference held at the Organic Word Congress on 13-15th October 2014 in Istanbul, Turkey. http://www.orgprints.org/id/eprint/24317/1/24317%2ORGhmann_MM.pdf
Walli, T.K. (2005). Bypass protein technology and the impact of feeding bypass protein to dairy animals in the tropics: A review. Indian J. Anim. Sci., 75: 135-142.
Wambugu, C., Place, F., & Franzel, S. (2011). Research, development and scaling up the adoption of fodder shrub innovations in East Africa. Int. J. Agric. Sustain., 9 (1): 100-109.
West, W., Hill, G.M., Gates, R. N., & Mullinix, B.G. (1997). Effects of dietary forage source and amount of forage addition on intake, milk yield, and digestion for lactating dairy cows. J. Dairy Sci., 80: 1656-1665.
Williams, L.J., & Abdi, H. (2010). Fisher’s Least Significant Difference (LSD) Test. In: Encyclopedia of Research Design. (Salkid, N. ed.). http://www.utdallas.edu/~herve/abdi_LSD2010.
Yates, N.G., & Panggabean, T. (1988). The performance of goats offered elephant grass (Pennisetum purpureum) with varied amounts of Leucaena or concentrate. Trop. Grassl., 22: 126-131.
Zaklouta, M., Hilali, M., Nefzaoui, A. and Haylani, M. (2011). Animal nutrition and product quality laboratory manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. viii + 92 pp.; ISBN: 92- 9127- 250- 7 www.icarda.org; https://aps.icarda.org/wsInternet/wsInternet.asmx/DownloadFileToLocal?filePath=Tools_and_guidelines/Animal_nutrition.pdf&fileName=Animal_nutrition.pdf.
Copyright (c) 2025 Joseph Ndwiga Kiura, James Ombiro Ondiek, PhD, Perminus Karubiu Migwi, PhD, Abdi Yakub Guliye, PhD

This work is licensed under a Creative Commons Attribution 4.0 International License.