Effects of Soil Type and Watering Regime on Performance of C4 Grass Ecotypes in A Simulated Semi-Arid Environment in Kenya

  • Bosco Kidake Kisambo Kenya Agricultural and Livestock Research Organization
  • Oliver Vivian Wasonga University of Nairobi
  • Oscar Koech Kipchirchir University of Nairobi
  • George Njomo Karuku University of Nairobi
Keywords: Cenchrus ciliaris, Ferralsols, Gleysols, Root Biomass, Root-Shoot Ratio, Shoot Biomass
Share Article:

Abstract

Perennial grasses form the bulk of nutrition for livestock in semi-arid grassland ecosystems in addition to the provision of other ecosystem services such as carbon storage. A study was undertaken to evaluate the performance of ecotypes of two common perennial semi-arid grasses (Panicum maximum and Cenchrus ciliaris) under different soil types and watering regimes. Four indigenous perennial grass ecotypes namely Panicum maximum ISY, Panicum maximum TVT, Cenchrus ciliaris KLF and Cenchrus ciliaris MGD grown in three different soil types (ferralsols, fluvisols, and gleysols) and subjected to varied watering regimes (enhanced, depressed and normal) in greenhouse study. Interactively, soil types and watering regimes strongly influenced the morphological attributes among the grass ecotypes. Shoot and root biomass production among ecotypes was significantly (p < 0.05) higher in fluvisols subjected to enhanced watering and lower in gleysols under depressed watering. Shoot biomass of the different grass ecotypes was higher in fluvisols by between 7-34 % and 10-35 % compared to those grown in ferralsols and gleysols respectively. Similar trends were observed in rood biomass. Enhanced watering resulted in enhanced growth irrespective of the soil type. Depressed water regimes contributed significantly (p < 0.05) to a decline in biomass. Root biomass of the grass ecotypes was higher by between 50-89 % in fluvisols compared to ferralsols and between 41-163 % in gleysols respectively. Root: shoot ratios ranged from 0.41 - 1.73 in in the grass ecotypes with soil types and watering strongly driving biomass allocation patterns. These findings suggest that soil types and watering are key drivers of the productivity of the grass ecotypes, and precipitation variability is likely to have a strong influence on the productivity of semi-arid perennial grasses. Establishing appropriate grasses in suitable soils and with adequate moisture can enhance the success of fodder production and rangeland restoration initiatives for increased resilience.

Downloads

Download data is not yet available.

References

Bansal, S., James, J. J., & Sheley, R. L. (2014). The effects of precipitation and soil type on three invasive annual grasses in the western United States. Journal of Arid Environments, 104, 38–42. https://doi.org/10.1016/j.jaridenv.2014.01.010

Belovitch, M. W., NeSmith, J. E., Nippert, J. B., & Holdo, R. M. (2023). African savanna grasses outperform trees across the full spectrum of soil moisture availability. New Phytologist, 239(1), 66–74. https://doi.org/10.1111/nph.18909

Boers, P.C.M. Van Raaphorst, W. & Van der Molen, D.T. (1998). Phosphorus retention in sediments. Water Science and Technology, 37(3), 31-39, https://doi.org/10.1016/S0273-1223(98)00053-5

Cheruiyot, D., Midega, C. A. O., Van den Berg, J., Pickett, J. A., & Khan, Z. R. (2018). Genotypic responses of Brachiaria grass (Brachiaria spp.) accessions to drought stress. Journal of Agronomy, 17(3), 136–146. https://doi.org/10.3923/ja.2018.136.146

Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P., & Tsuji, W. (2008). Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. Journal of Plant Nutrition, 31(2), 355–365. https://doi.org/10.1080/01904160801894913

Frasier, I., Noellemeyer, E., Fernández, R., & Quiroga, A. (2016). Direct field method for root biomass quantification in agroecosystems. MethodsX, 3, 513–519. https://doi.org/10.1016/j.mex.2016.08.002

Fromm, H. (2019). Root plasticity in the pursuit of water. Plants, 8(7). https://doi.org/10.3390/plants8070236

Gichangi, E. M., Njarui, D. M. G., & Gatheru, M. (2017). Plant shoots and roots biomass of Brachiaria grasses and their effects on soil carbon in the semi-arid tropics of Kenya. Tropical and Subtropical Agroecosystems, 20, 65–74.

Gichangi, E. M., Njarui, D. M. G., Ghimire, S. R., Gatheru, M., & Magiroi, M. K. N. (2016). Effects of cultivated Brachiaria grasses on soil aggregation and stability in the Semi-Arid Tropics of Kenya. Tropical and Subtropical Agroecosystems, 19, 205–217.

He, Y., Jaiswal, D., Liang, X.-Z., Sun, C., & Long, S. P. (2021). Perennial biomass crops on marginal land improve both regional climate and agricultural productivity. GCB Bioenegery, 14(5), 497–619. https://doi.org/10.1111/gcbb.12937

Hinga, F. N., Muchena, F. N. and C. M. Njihia, 1980: Physical and Chemical methods of analysis. National Agricultural Research laboratories, MoA, Kenya.

House, J. I., & Hall, D. O. (2001). Productivity of tropical Savannahs and Grasslands. In J. Roy, B. Saugier, & H. A. Mooney (Eds.), Terrestrial Global Productivity (pp. 363–400). Academic Press Limited.

Irving, L. (2015). Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture, 5(4), 1116–1134. https://doi.org/10.3390/agriculture5041116

IUSS Working Group WRB. (2015). International soil classification system for naming soils and creating legends for soil maps. In World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO.

Izaurralde, R. C., Thomson, A. M., Morgan, J. A., Fay, P. A., Polley, H. W., & Hatfield, J. L. (2011). Climate impacts on agriculture: Implications for forage and rangeland production. Agronomy Journal, 103(2), 371–381. https://doi.org/10.2134/agronj2010.0304

Kemp, C. D. (1960). Methods of estimating the leaf area of grasses from linear measurements. Annals of Botany, 24(4), 491–499. https://doi.org/10.1093/oxfordjournals.aob.a083723

Keya, G. A. (1997). Environmental triggers of germination and phenological events in an arid savannah region of northern Kenya. Journal of Arid Environments, 37(1), 91–106. https://doi.org/10.1006/jare.1997.0263

King, A. E., Ali, G. A., Gillespie, A. W., & Wagner-Riddle, C. (2020). Soil Organic Matter as Catalyst of Crop Resource Capture. Frontiers in Environmental Science, 8, 1–8. https://doi.org/10.3389/fenvs.2020.00050

Kirwa, E. C. (2019). Evaluation of grass ecotypes for potential use in reseeding pastoral fields in the arid and semi-arid lands of Kenya. PhD. Thesis, University of Nairobi. http://erepository.uonbi.ac.ke/handle/11295/106671

Koech, O. K., Ngugi, K. R., Njomo, K. G., Mwangi, M. S., & Wanjogu, R. (2015). Water use efficiency of six rangeland grasses under varied soil moisture content levels in the arid Tana River County, Kenya. African Journal of Environmental Science and Technology, 9(7), 632–640. https://doi.org/10.5897/AJEST2015.1917

Kołodziejek, J. (2019). Growth performance and emergence of invasive alien Rumex confertus in different soil types. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-56068-9

Lee, M. S., Wycislo, A., Guo, J., Lee, D. K., & Voigt, T. (2017). Nitrogen fertilization effects on biomass production and yield components of Miscanthus × giganteus. Frontiers in Plant Science, 8, 1–9. https://doi.org/10.3389/fpls.2017.00544

Liu, Y., Xu, M., Li, G., Wang, M., Li, Z., & De Boeck, H. J. (2021). Changes of aboveground and belowground biomass allocation in four dominant grassland species across a precipitation gradient. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.650802

Lugusa, K. O., Wasonga, O. V., Elhadi, Y. A., & Crane, T. A. (2016). Value chain analysis of grass seeds in the drylands of Baringo County, Kenya: A producers’ perspective. Pastoralism, 6, 6 (2016). https://doi.org/10.1186/s13570-016-0053-1

Magha, A. M., Azinwi Tamfuh, P., Mamdem, L. E., Shey Yefon, M. C., Kenzong, B., & Bitom, D. (2021). Soil water characteristics of gleysols in the Bamenda (Cameroon) wetlands and implications for agricultural management strategies. Applied and Environmental Soil Science vol. 2021, Article ID 6643208, 15 pp. https://doi.org/10.1155/2021/6643208

Mangena, P. (2018). Water Stress: Morphological and anatomical changes in Soybean (Glycine max L.) Plants. InTech. doi: 10.5772/intechopen.72899

Marshall, V. M., Lewis, M. M. & Ostendorf, B. (2012). Buffel grass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: A review. Journal of Arid Environments, 78, 1–12. https://doi.org/https://doi.org/10.1016/j.jaridenv.2011.11.005

Mckell, M. C., Alma, W. M., & Jones, M. B. (1961). A flotation method for easy separation of roots from soil samples. Agronomy Journal, 53(1), 56–57. https://doi.org/10.2134/agronj1961.00021962005300010022x

Mganga, K. Z., Bosma, L., Amollo, K. O., Kioko, T., Kadenyi, N., Ndathi, A. J. N., Wambua, S. M., Kaindi, E. M., Musyoki, G. K., Musimba, N. K. R., & van Steenbergen, F. (2022). Combining rainwater harvesting and grass reseeding to revegetate denuded African semi-arid landscapes. Anthropocene Science, 1(1), 80–90. https://doi.org/10.1007/s44177-021-00007-9

Mganga, K. Z., Kaindi, E., Ndathi, A. J. N., Bosma, L., Kioko, T., Kadenyi, N., Wambua, S. M., van Steenbergen, F., & Musimba, N. K. R. (2021). Morpho-ecological characteristics of grasses used to restore degraded semi-arid African rangelands. Ecological Solutions and Evidence, 2(2), 1–8. https://doi.org/10.1002/2688-8319.12078

Mganga, K. Z., Musimba, N. K. R., Nyangito, M. M., Nyariki, D. M., & Mwangombe, A. W. (2010). Improving hydrological responses of degraded soils in semi-arid Kenya. Journal of Environment Science and Technology, 3(4), 217–225.

Mganga, K. Z., Musimba, N. K. R., Nyariki, D. M., Nyangito, M. M., Ekaya, W. N., Muiru, W. M., and Mwangi, W. (2011). Different land use types in the semi-arid rangelands of Kenya influence soil properties. Journal of Soil Science, 2(11), 370–374. http://www.academicjournals.org/JSSEM

Mnene, W. N. (2006). Strategies to increase success rates in natural pasture improvement through Re-seeding degraded semi-arid rangelands of Kenya. PhD. Thesis, University of Nairobi. http://erepository.uonbi.ac.ke/handle/11295/21122

Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12(1), 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x

Montagnini, F., Ibrahim, M., & Murgueitio Restrepo, E. (2013). Silvopastoral systems and climate change mitigation in Latin America. Bois et Forets Des Tropiques, 67(316), 3–16. https://doi.org/10.19182/bft2013.316.a20528

Mugo, J. W., Opijah, F. J., Ngaina, J., Karanja, F. & Mburu, M. (2020). Rainfall variability under present and future climate scenarios using the Rossby Center Bias-Corrected Regional Climate Model. American Journal of Climate Change, 09(03), 243–265. https://doi.org/10.4236/ajcc.2020.93016

Muindi, M. E. (2019). Understanding soil phosphorus. International Journal of Plant & Soil Science, 31 (2). 1–18. https://doi.org/10.9734/ijpss/2019/v31i230208

Njarui, D. M. G., Gatheru, M., Mwangi, D. M. & G. A. Keya. (2015). Persistence and productivity of selected Guinea grass ecotypes in semiarid tropical Kenya. Grassland Science, 61(3), 142–152. https://doi.org/10.1111/grs.12092

Omollo, E. (2017). Analysis of fodder production and marketing in the rangelands of Southern Kenya. MSc. Thesis, University of Nairobi.

Omwakwe, J. A., Chemining, G. N., Esilaba, A. O., & Thuraniraa, E. G. (2022). Macro and Micro-Nutrient Status of Selected Kenya Soils. East African Agricultural and Forestry Journal, 87(2), 88–98.

Poeplau, C., & Kätterer, T. (2017). Is soil texture a major controlling factor of root: shoot ratio in cereals? European Journal of Soil Science, 68(6), 964–970. https://doi.org/10.1111/ejss.12466

Poorter, H., & Andrzej, M. Jagodzinski, Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., Usoltsev, V. A., Buckley, T. N., Reich, P. B. & Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis of 1200 plant species from five continents. New Phytologist, 208(3), 736–749. https://doi.org/10.1111/nph.13571

Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P. & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1):30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x

Qi, Y., Wei, W., Chen, C., & Chen, L. (2019). Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 18(18), e00606. https://doi.org/10.1016/j.gecco.2019.e00606

Read, J., & Stokes, A. (2006). Plant biomechanics in an ecological context. American Journal of Botany, 93, 1546–1565. https://doi.org/10.3732/ajb.93.10.1546

Rehling, F., Sandner, T. M., & Matthies, D. (2021). Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. Journal of Ecology, 109(5), 2219–2233. https://doi.org/10.1111/1365-2745.13635

Ritter, F., Berkelhammer, M. & Garcia, C. (2020). Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Communications Earth & Environment, 1(34), 1–8. https://doi.org/10.1038/s43247-020-00034-1

Rodrigo-Comino, J., Keshavarzi, A., & Senciales-González, J. M. (2021). Evaluating soil quality status of fluvisols at the regional scale: A multidisciplinary approach crossing multiple variables. River Research and Applications 39 (7), 1367-1381. https://doi.org/10.1002/rra.3865

Schoonover, J. E., & Crim, J. F. (2015). An introduction to soil concepts and the role of soils in watershed management. Journal of Contemporary Water Research and Education, 154 (1), 21–47. https://doi.org/10.1111/j.1936-704X.2015.03186.x

Shang, Y., Olesen, J. E., Lærke, P. E., Manevski, K., & Chen, J. (2024). Perennial cropping systems increased topsoil carbon and nitrogen stocks over annual systems—a nine-year field study. Agriculture, Ecosystems and Environment, 365. Article 108925 https://doi.org/10.1016/j.agee.2024.108925

Soti, P., & Thomass, V. (2022). Review of invasive forage grass, Guinea grass (Megathyrsus maximus): Ecology and potential impacts in the arid and semi-arid regions. Weed Research, 62, 68–74. https://doi.org/https://doi.org/10.1111/wre.12512

Thomas, R., El-Dessougi, H., & Tubeileh, A. (2006). Soil System Management under Arid and Semi-Arid Conditions (N. Uphoff, A. S. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Saginga, & J. Thies (eds.); Issue March, pp. 41–55). CRC Press. https://doi.org/10.1201/9781420017113.ch4

Tierney, J. E., Ummenhofer, C. C., & Peter, B. (2015). Past and future rainfall in the Horn of Africa. Science Advances, 1(9), 1–9. https://doi.org/10.1126/sciadv.1500682

Zhang, J., Zuo, X., Zhao, X., Ma, J., & Medina-Roldán, E. (2020). Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semi-arid sandy grassland. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-65922-0

Published
22 August, 2024
How to Cite
Kisambo, B., Wasonga, O., Kipchirchir, O., & Karuku, G. (2024). Effects of Soil Type and Watering Regime on Performance of C4 Grass Ecotypes in A Simulated Semi-Arid Environment in Kenya. East African Journal of Agriculture and Biotechnology, 7(1), 399-415. https://doi.org/10.37284/eajab.7.1.2126