Electrochemical Reduction of Carbon Dioxide to Formate by Tin-based Metal-Organic Frameworks
Abstract
There is an urgent need to develop new technologies for converting greenhouse gas CO2 into useful products to address environmental and energy crises simultaneously. Electrochemical CO2 reduction reaction (eCO2RR) driven by renewable electricity affords a capable route to realizing a carbon-neutral future and combating a global climate predicament. In determining the relationship between synthesis approach, catalyst structure and performance, two Sn-MOF electrocatalysts were produced with a bottom-up hydrothermal method. A two-dimensional catalyst 2D Sn-BDC was prepared by the open hydrothermal synthesis method, while a three-dimensional catalyst 3D Sn-BDC was prepared under the closed hydrothermal method. In CO2-saturated 0.5 M KHCO3 aqueous solution, 2D Sn-BDC catalyst displayed good performance compared with 3D Sn-BDC catalyst for CO2 reduction to formate with Faradaic efficiency of 96.3 %, partial current density of 10.0 mA cm-2 at an overpotential of 0.42 V, TOF of 4887 h-1, charge transfer resistance of 42.98 Ω and over a 10 h stability. It is recognized that the superiority of 2D Sn-BDC is assumed to originate from the ultrathin structure, enhanced surface area and presence of surface vacancies. Consequently, the improvement in mass transport, accessibility of Sn active sites and carrier concentration resulted in high catalytic performance
Downloads
References
M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709-1742.
A. Rafiee, K. Rajab Khalilpour, D. Milani, M. Panahi, J. Environ. Chem. Eng. 2018, 6, 5771-5794.
J. Wu, X.-D. Zhou, Chinese J. Catal. 2016, 37, 999-1015.
S.-Z. Hou, X.-D. Zhang, W.-W. Yuan, Y.-X. Li, Z.-Y. Gu, Inorg. Chem. 2020, 59, 11298-11304.
S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek, K. T. Park, ACS Sustain. Chem. Eng. 2016, 4, 1311-1318.
Y. Wang, J. Zhou, W. Lv, H. Fang, W. Wang, Appl. Surf. Sci. 2016, 362, 394-398.
Z. Yang, F. E. Oropeza, K. H. L. Zhang, APL Mater. 2020, 8, 060901.
N. Han, P. Ding, L. He, Y. Li, Y. Li, Adv. Energy Mater. 2020, 10, 1902338.
S. C. Perry, P.-k. Leung, L. Wang, C. Ponce de León, Curr Opin Electrochem . 2020, 20, 88-98.
Y. Ling, Q. Ma, Y. Yu, B. Zhang, Transactions of Tianjin University 2021, 27, 180-200.
N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc. 2015, 137, 14129-14135.
D. Narváez-Celada, A. S. Varela, J. Mater. Chem. A 2022, 10, 5899-5917.
H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, ACS Central Science 2022, 8, 1506-1517.
Z. Di, Y. Qi, X. Yu, F. Hu, in J. Catal. Vol. 12, 2022.
P. S. Ho, K. C. Chong, S. O. Lai, S. S. Lee, W. J. Lau, S.-Y. Lu, B. S. Ooi, Aerosol Air Qual. Res. 2022, 22, 220235.
J. D. Evans, B. Garai, H. Reinsch, W. Li, S. Dissegna, V. Bon, I. Senkovska, R. A. Fischer, S. Kaskel, C. Janiak, N. Stock, D. Volkmer, Coordin. Chem. Rev. 2019, 380, 378-418.
Y. Yang, H. Dong, Y. Wang, C. He, Y. Wang, X. Zhang, J. Solid State Chem. 2018, 258, 582-587.
T. Rasheed, K. Rizwan, M. Bilal, H. M. N. Iqbal, in Molecules, Vol. 25, 2020.
N. Aljammal, C. Jabbour, S. Chaemchuen, T. Juzsakova, F. Verpoort, in J. Catal . Vol. 9, 2019.
S. W. Jaros, M. F. C. Guedes da Silva, M. Florek, M. C. Oliveira, P. Smoleński, A. J. L. Pombeiro, A. M. Kirillov, Crystal Growth Design 2014, 14, 5408-5417.
K. Wang, Z. Geng, M. Zheng, L. Ma, X. Ma, Z. Wang, Crystal Growth Design 2012, 12, 5606–5614.
P. Manna, S. K. Das, Crystal Growth Design 2015, 15, 1407-1421.
S. S. A. Shah, T. Najam, M. Wen, S.-Q. Zang, A. Waseem, H.-L. Jiang, Small Structures 2022, 3, 2100090.
D. Kim, X. Liu, M. S. Lah, Inorg. Chem. Frontiers 2015, 2, 336-360.
J. Gu, M. Wen, X. Liang, Z. Shi, M. V. Kirillova, A. M. Kirillov, Crystals, 2018, 8.
C. Pettinari, A. Tombesi, MRS Energy Sustain. 2020, 7, 35.
Y. Zhang, X. Yang, H.-C. Zhou, Polyhedron 2018, 154, 189-201.
P. C. Lemaire, D. T. Lee, J. Zhao, G. N. Parsons, ACS Appl. Mater. Interfaces 2017, 9, 22042-22054.
P. Ji, K. Manna, Z. Lin, A. Urban, F. X. Greene, G. Lan, W. Lin, J. Am. Chem. Soc. 2016, 138, 12234-12242.
L. J. Beeching, C. S. Hawes, D. R. Turner, S. R. Batten, CrystEngComm 2014, 16, 6459-6468.
X. Wang, L. Liu, T. Makarenko, A. J. Jacobson, Crystal Growth & Design, 2010, 10 (8).
J. Wu, F. G. Risalvato, F.-S. Ke, P. J. Pellechia, X.-D. Zhou, J. Electrochem. Soc. 2012, 159, F353.
A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A. Irabien, Appl. Energ. 2015, 157, 165-173.
W. Lv, R. Zhang, P. Gao, L. Lei, J. Power Sources 2014, 253, 276-281.
S. Rasul, A. Pugnant, H. Xiang, J.-M. Fontmorin, E. H. Yu, J. CO2 Util. 2019, 32, 1-10.
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Nano-Micro Letters 2019, 11, 62.
F. Cheng, X. Zhang, K. Mu, X. Ma, M. Jiao, Z. Wang, P. Limpachanangkul, B. Chalermsinsuwan, Y. Gao, Y. Li, Z. Chen, L. Liu, Energy Technology 2021, 9, 2000799.
Y. F. Tay, Z. H. Tan, Y. Lum, ChemNanoMat 2021, 7, 380-391.
W. J. Dong, C. J. Yoo, J.-L. Lee, ACS Appl. Mater. Interfaces 2017, 9, 43575-43582.
X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinrück, K. Lim, Y. Li, M. Toney, K. Chan, Y. Cui, Nat. Catal. 2019, 2.
G. B. Damas, C. R. Miranda, R. Sgarbi, J. M. Portela, M. R. Camilo, F. H. B. Lima, C. M. Araujo, in J. Catal . Vol. 9, 2019.
J.-X. Wu, X.-R. Zhu, T. Liang, X.-D. Zhang, S.-Z. Hou, M. Xu, Y.-F. Li, Z.-Y. Gu, Inorg. Chem. 2021, 60, 9653-9659.
Y. Peng, S. Sanati, A. Morsali, H. García, Angew. Chem. Int. Ed. 2023, 62, e202214707.
Y. Wu, F. Li, Z. Lv, J. Xue, ChemistrySelect 2019, 4, 9403-9409.
X. Wang, Y. Zou, Y. Zhang, B. Marchetti, Y. Liu, J. Yi, X.-D. Zhou, J. Zhang, J. Colloid Interf. Sci 2022, 626, 836-847.
G. M. de Lima, R. I. Walton, G. J. Clarkson, R. S. Bitzer, J. D. Ardisson, Dalton Trans. 2018, 47, 8013-8022.
S. Narayanaru, G. M. Anilkumar, M. Ito, T. Tamaki, T. Yamaguchi, Catal. Sci. Technol. 2021, 11, 143-151.
B. J. Wang, S. Y. Ma, S. T. Pei, X. L. Xu, P. F. Cao, J. L. Zhang, R. Zhang, X. H. Xu, T. Han, Sensors Actuators B: Chemical 2020, 321, 128560.
W. Xiang, Y. Zhang, Y. Chen, C.-j. Liu, X. Tu, J. Mater. Chem. A 2020, 8, 21526-21546.
L. Li, X. Feng, Y. Nie, S. Chen, F. Shi, K. Xiong, W. Ding, X. Qi, J. Hu, Z. Wei, L.-J. Wan, M. Xia, ACS Catal. 2015, 5, 4825-4832.
L. Li, Z.-J. Zhao, C. Hu, P. Yang, X. Yuan, Y. Wang, L. Zhang, L. Moskaleva, J. Gong, ACS Energy Lett. 2020, 5, 552-558.
J. Liu, Mater. Lab 2022, 1.
D. D. Zhu, J. L. Liu, S. Z. Qiao, Adv. Mater. 2016, 28, 3423-3452.
K. Zhao, W. Zhu, S. Liu, X. Wei, G. Ye, Y. Su, Z. He, Nanoscale Advances 2020, 2, 536-562.
T. Zhan, Y. Zou, Y. Yang, X. Ma, Z. Zhang, S. Xiang, ChemCatChem 2022, 14, e202101453.
G. Zhan, H. C. Zeng, Adv. Funct. Mater. 2016, 26, 3268-3281.
G. Liu, Z. Li, J. Shi, K. Sun, Y. Ji, Z. Wang, Y. Qiu, Y. Liu, Z. Wang, P. Hu, Appl. Catalysis B: Environ. 2020, 260, 118134.
Y. Deng, S. Wang, Y. Huang, X. Li, Chinese. J. Chem. Eng. 2022, 43, 353-359.
X. Teng, Y. Niu, S. Gong, X. Liu, Z. Chen. J. Electrochem. 2022, 28, 2108441.
Copyright (c) 2025 Austin Chipojola Mtukula, PhD, Wen-Chuan Lai, PhD, Zhi-Yuan Gu, PhD

This work is licensed under a Creative Commons Attribution 4.0 International License.