
East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

1 | This work is licensed under a Creative Commons Attribution 4.0 International License.

East African Journal of Information Technology
eajit.eanso.org

Volume 5, Issue 1, 2022

Print ISSN: 2707-5346 | Online ISSN: 2707-5354
Title DOI: https://doi.org/10.37284/2707-5354

EAST AFRICAN
NATURE &
SCIENCE

ORGANIZATION

Original Article

Analysing the Obstacles in Agile Software Development Approach: A
Review.

Amos O. Jarikre1*, Yogesh Kumar Sharma2, Amoako Kani John3 & Stercy Kwasi Bailey1

1 Shiv-India Institute of Management and Technology, Accra, Ghana.
2 Om Sterling Global University, Hisar, Haryana, India.
3 Heritage Christian College, Amasaman, Ghana.

* Correspondence ORCID: https://orcid.org/0000-0002-8885-2173; email: jarky4u2c@gmail.com.

Article DOI: https://doi.org/10.37284/eajit.5.1.520

Date Published:

 4 January 2022

Keywords:

Software,

 Agility,

 Software Industry,

Software Development,

 Agile SDA.

ABSTRACT

The development of reusable and extensible software for business purposes

has been the hallmark of the day. More developers are taking advantage of

numerous approaches towards reaching their goals. One such approach is the

agile approach in the development of extensible applications which has

become so popular since its introduction over a decade ago. Using an agile

approach that has a defined value in developing applications portray

numerous benefits which have been identified by various scholars pointing

out their outcomes as motivating factors of its adoption. With all such outline

benefits, there exist some potential obstacles to agile developmental approach

which has not been fully addressed. Hence, this article is aimed at analysing

the obstacles which software developers face during agile development

through a database search and also to guide them on ways to overcome such

obstacles.

APA CITATION

Jarikre, A. O., Sharma, Y. K., John, A. K., & Bailey, S. K. (2022). Analysing the Obstacles in Agile Software Development

Approach: A Review. East African Journal of Information Technology, 5(1), 1-6. https://doi.org/10.37284/eajit.5.1.520

 CHICAGO CITATION

Jarikre, Amos O, Yogesh Kumar Sharma, Amoako Kani John, & Stercy Kwasi Bailey. 2022. “Analysing the Obstacles in Agile

Software Development Approach: A Review”. East African Journal of Information Technology 5 (1), 1-6.

https://doi.org/10.37284/eajit.5.1.520.

 HARVARD CITATION

Jarikre, A. O., Sharma, Y. K., John, A. K., & Bailey S. K. (2022) “Analysing the Obstacles in Agile Software Development

Approach: A Review”, East African Journal of Information Technology, 5(1), pp. 1-6. doi: 10.37284/eajit.5.1.520.

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7276-844
https://doi.org/10.37284/eajit.5.1.520

East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

2 | This work is licensed under a Creative Commons Attribution 4.0 International License.

IEEE CITATION

A. O. Jarikre., Y. K. Sharma., A. K. John., & S. K. Bailey. “Analysing the Obstacles in Agile Software Development Approach:

A Review”, EAJIT, vol. 5, no. 1, pp. 1-6, Jan. 2022.

MLA CITATION

Jarikre, Amos O, Yogesh Kumar Sharma, Amoako Kani John, & Stercy Kwasi Bailey. “Analysing the Obstacles in Agile

Software Development Approach: A Review”. East African Journal of Education Studies, Vol. 5, no. 1, Jan. 2022, pp. 1-6,

doi:10.37284/eajit.5.1.520.

INTRODUCTION

Over the years, developers of software’s have been

focusing on the traditional waterfall software

development methods in meeting their demands for

business applications. Such methods require the

developer experience and voluminous

documentation to support the developmental

process. The traditional waterfall software

development methods which were popularly used

by developers saw its systematic setback with the

introduction of the agile development method some

decade ago. This was due to their outcome that

motivates the developers as well as its defined

values in the development process for business

applications.

Agility as it is referred to by some scholars was not

all that new idea or approach towards achieving

software developmental goals in industry or

business environment, but according to Al-Saqqa,

Sawalha and AbdelNabi (2020), agility is the ability

to adaptively promote quick response to any change,

either in the environment, in the user requirements

or in any delivery constraints. Proposing agility in

the software industry or business environment was

completely an innovative concept (Gandomani et

al., 2013) which has to be systematically adopted.

Agility (agile approaches) comes with better

feasibilities when compared with the traditional

methods of software development on a small scale.

Although there have been notable concerns about

these feasibilities, it is the high-quality outcome and

ability to meet customers satisfaction that has over

time persuaded software developers and

practitioners to adopt and utilise these approaches

(Glazer, 2010).

In order to systematically analyse the obstacles in

Agile Software Development Approach (SDA), this

study looked at the concepts of agile software

development approach, traditional approach

towards software development, comparison

between traditional and agile approach towards

software development, outlines the obstacles to

agile approach in software development and suggest

approaches to be adopted by developers when faced

with such obstacles during their developmental

processes.

CONCEPTS OF AGILE SOFTWARE

DEVELOPMENT APPROACH

The ability to minimise software developmental risk

such as overrun developmental cost, changing

developmental requirements and bugs clearly

explains the team “agile development approaches”

during the phase of additional software

functionalities. Such approaches (agile software

development approaches) are usually carried out in

iterations coming some of the increments of the

added new software functionalities. Hence

Beerbaum (2019) was able to point out that one

benefit of the agile approach in software

development is that it allows the development of

software through processes of iterations and

incremental changes. According to Pereira and de

FSM Russo (2018), the agile software development

approach is an enabler that accelerates software

delivery, manage its priorities changes and increase

its productivity. Agile software development

methods or approaches are widely used by

developers and business practitioners in the

software industry as a way to more rapidly

developing and deliver new software (Venkatesh et

al., 2020) that could meet business needs. The agile

development method, according to Ruk et al.

(2019), has also engrossed extensive communal and

academic consideration as the restrictions of

conventional software development techniques

become apparent.

Agile development method has Scrum method -

delivering the highest value in the shortest time;

Test Driven Development (TDD) method - based

on building a small iteratively automated testing

programs; Extreme programming method -

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

3 | This work is licensed under a Creative Commons Attribution 4.0 International License.

improve the software quality by taking the concepts

of software engineering to an extreme level

(Schmidt, 2016); Feature-driven development

(FDD) method - manages short incremental

iterations leading to functional software and

Dynamic System Development Method (DSDM) -

provides rapid application development based on

the agile principles (Anwer et al., 2017) as its

different forms. Adopting agile software

development signifies shoring more cooperative

environments and organisational policies that

enable self-organisation and team efficiency (Ruk et

al., 2019). According to Marandi and Ali (2017), it

creates the ability to reduce time and costs, improve

software quality as well as fewer defects, meet the

requirement of clients and ability of delivering

software quality products in a timely basis. All of

these signify some of the enormous usages of agile

development. Other advantages achieved by

adopting agile software development approaches

were outlined by Choudhary and Rakesh (2016) as

enabling the improvement on communication as

well as coordinating team members, smart design

flexibility, contain vast reasonable process and

possesses quick releases.

Traditional Approach Towards Software

Development

Traditional software development approach (SDA)

is known for their linear approaches that constitute

several stages of development processes that must

be completed in sequential order. Such sequential

order requires the completion of one phase before

embarking on the next phase according to the

software development plan. As a sequential

approach, traditional SDAs usually are associated

with software requirements gathering and

documentation, design of the system, coding,

testing, which includes unit, system and user’s

acceptance testing, fixing of bugs and release of

software as being their development stages.

The traditional approaches are very useful in

developing complex software, which helps to

eliminate informal software requirements and

deliver high-quality software’s that meets the

requirement of users within a predefined time limit

(Matharu et al., 2015). Waterfall approach, spiral

approach, iterative and incremental approach,

evolutionary approach etc., are examples of some

traditional software development approaches and

methods which are often referred to as heavyweight

approaches (Mall, 2018). Although the traditional

approaches or methods are meant for complex

software development referred to as “heavy

applications”, there exist some issues associated

with their complexity which were outlined by

Braude and Bernstein (2016) as writing software’s

requirements, advance planning of projects, design

formalities that correspond to the written

requirements, building design code in accordance

with all the written requirements and testing of the

software functionalities and also in compliance with

design requirements.

Comparison between Traditional and Agile

Approach towards Software Development

Traditional SDA relies mostly on the assumption

that technology innovations are created in an

academic environment, which later are then

transferred to industry using a sequential flow of

activities (Mikkonen et al., 2018) but this

assumption is slowly fading out as modern

approaches have seen close collaboration between

academia and industry both in small and as well as

large scale. For agile SDA, it focuses on quickly

delivering complete and functional software

products. The agile software development process

provides the ability to cope with ever-changing

requirements (Ferdinansyah & Purwandari, 2021).

Previous studies have shown that agile development

reduced the cost of system development which

includes testing, and also enhanced IT – business

alliances (Tarhini, Yunis & El-Kassar, 2018). One

major comparative advantage of the agile

development process is that it delivers software that

fulfils customer needs rapidly and continuously

(Karhapää et al., 2021).

Each of these SDA’s (traditional and agile)

possesses some distinct characteristics that feature

as their main goal toward software development.

This statement clearly shows that there exist some

characteristics which are pertinent to specific

SDA’s. Table 1 below presents some of these

characteristics based on some software parameters

between traditional (often referred to as heavy) and

agile (light) SDA’s.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

4 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Table 1: Comparison between traditional and agile approaches towards software development using

some specific parameters

No. Software parameters Agile SDA Traditional SDA

1 Development approach Iterative approach Sequential approach

2 Scalability Light-weighted Heavy weighted

3 Size of project Small projects Large and complex projects

4 Attitudinal nature Adaptive nature Predictive nature

5 Size of team Small Medium

6 Development duration Short term (speedily) Long term

7 Project cost Cost-effective (low cost) Expensive

8 Project management Enhance collaboration

(decentralised)

Strictly based on commands and control

(autocratic)

9 Budgets determinant per-sprint basis per-project basis

10 Software

documentation

Few (low) Detailed (high)

11 Risks involvement Risks are unknown having

major impact

Known risks having a minor impact

12 Software modification Easily modifiable Difficult to modify

With the above-mentioned parameters on SDA’s,

the agile SDA will be attractive to customers who

need urgent software for their business purposes

since according to Al-Saqqa et al. (2020), they are

more adaptive to the requested changes from

customers. This occurs as a result of the regular

involvement of the customers during all its iterative

processes. Hence, the agile SDA fosters

collaborative trust between software developers and

their customers. As attractive as the agile SDA may

be when compared to traditional SDA, software

developers also encounter some obstacles during the

developmental process using agile SDA. The next

session below outlines some of these obstacles.

OBSTACLES TO AGILE APPROACH IN

SOFTWARE DEVELOPMENT

Migrating from traditional SDA to agile SDA need

careful planning and consideration because it comes

with some obstacles if not properly handled. Some

of the known obstacles are discussed in the next

sections below.

Lack of Business Owner Interest

One major obstacle to agile SDAs is the

involvement of newcomers such as business

developers who hesitate to use software without

considering business requirement documentation as

a necessary requirement needed. For business

owner’s view the use of agile SDA as mainly a

contract binding that exists between IT and

themselves hereby giving up on the business

requirements document. This poses a threat to the

entire business environment because these owners

will not be able to control or monitor the business

direction since there is not any interest and

awareness of the product.

Use of Obsolete Development Tool

Most business analysts are still using Microsoft

excel and word to author business development

requirements which are mainly obsolete when

compared to the recently used Application Life

Cycle Management (ALM) software tool, which

most software developers do use for agile

applications making it easier for developers to be

able to decompose users’ stories into useful

developmental tasks. According to Gandomani et al.

(2013), business owners should endeavour to use

tools that can supply incremental evolution, version

management, re-working, continuous integration

and other available agile technologies. The use of

obsolete tools makes it difficult for Business

Analysts and stakeholders to actualise the full

benefits of the agile manifesto, which lack the cross-

departmental collaboration that is expected to occur.

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

5 | This work is licensed under a Creative Commons Attribution 4.0 International License.

Lack of Collaborated Teams

The agile manifesto makes it clear that a cross-

departmental team are needed for better

collaboration in order to deliver the product, but it

did not specify that such teams are inclusive of

technical and business minds; rather, it projected the

view that it is all about developers which many

believe to be core coders. But it means the term is

making it seems as if it is all about the technical

developers rather than an all-inclusive team that

includes business analyst and stakeholder. Such

terms used should be clearly explained in order for

all concerns in the software development process to

get involved in ensuring a potential release of a

useful working product.

Behavioural Change

The behavioural change of individuals is certain to

most sectors of an economy as it is very difficult for

people to adapt to change whenever it is needed. So,

introducing the agile development process to

businesses or developers might resist some kind of

attitudinal reactions which might stand as a setback

if not carefully handled. Since it is difficult for

persons to change behaviour, the agile

transformation process should be slowly introduced

to people by means of training. Such a view is

supported by Srinivasan and Lundqvist (2010) that

insist on managers selecting the appropriate

personnel and providing them with the necessary

training and creating a set of work practices that

promote process excellence.

The above obstacles range from managerial to

technical issues, which should be carefully before

business owners adopt the agile transformation

process. Nevertheless, expert decisions should be

taken while recognising all of the above-mentioned

obstacles before fully adopting the agile SDA.

CONCLUSION

This research considers looking into agile SDA

while also explaining traditional SDA and some

comparisons between agile and traditional SDA.

Although the concept of the agile software

development method is innovative and feasible with

some similarities to other developmental processes,

its inefficiency can be witnessed when used in large

business organisations. Hence, it is advisable to

adopt the agile approach only on a small scale for

better efficiency and productivity.

REFERENCES

Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. (2020).

Agile Software Development: Methodologies

and Trends. International Journal of Interactive

Mobile Technologies, 14(11).

Anwer, F., Aftab, S., Waheed, U., & Muhammad,

S. S. (2017). Agile software development

models TDD, FDD, DSDM, and crystal

methods: A survey. International journal of

multidisciplinary sciences and engineering,

8(2), 1-10.

Beerbaum, D. (2021). Applying Agile Methodology

to regulatory compliance projects in the

financial industry: A case study research.

https://dx.doi.org/10.2139/ssrn.3834205

Braude, E. J., & Bernstein, M. E. (2016). Software

engineering: modern approaches. Waveland

Press.

Choudhary, B., & Rakesh, S. K. (2016). An

approach using agile method for software

development. In 2016 International Conference

on Innovation and Challenges in Cyber Security

(ICICCS-INBUSH) (pp. 155-158). IEEE.

Ferdinansyah, A., & Purwandari, B. (2021).

Challenges in Combining Agile Development

and CMMI: A Systematic Literature Review. In

2021 10th International Conference on Software

and Computer Applications (pp. 63-69).

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A.,

Sultan, A. B. M., & Nafchi, M. Z. (2013).

Obstacles in moving to agile software

development methods; at a glance. Journal of

Computer Science, 9(5), 620.

Glazer, H. (2010). Love and marriage: CMMI and

agile need each other. CrossTalk, 23: 29-34.

Karhapää, P., Behutiye, W., Rodríguez, P., Oivo,

M., Costal, D., Franch, X., & Abherve, A.

(2021). Strategies to manage quality

requirements in agile software development: a

http://creativecommons.org/licenses/by/4.0/

East African Journal of Information Technology, Volume 5, Issue 1, 2022
Article DOI: https://doi.org/10.37284/eajit.5.1.520

6 | This work is licensed under a Creative Commons Attribution 4.0 International License.

multiple case study. Empirical Software

Engineering, 26(2), 1-59.

Mall, R. (2018). Fundamentals of software

engineering. PHI Learning Pvt. Ltd

Marandi, A. K., & Ali, D. (2017). An Approach of

Statistical Methods for Improve Software

Quality and Cost Minimisation. International

Journal of Applied Engineering Research, 12(6),

1054-1061.

Matharu, G. S., Mishra, A., Singh, H., & Upadhyay,

P. (2015). Empirical study of agile software

development methodologies: A comparative

analysis. ACM SIGSOFT Software Engineering

Notes, 40(1), 1-6.

Mikkonen, T., Lassenius, C., Männistö, T., Oivo,

M., & Järvinen, J. (2018). Continuous and

collaborative technology transfer: Software

engineering research with real-time industry

impact. Information and Software Technology,

95, 34-45.

Pereira, J. C., & de FSM Russo, R. (2018). Design

thinking integrated in agile software

development: A systematic literature review.

Procedia computer science, 138, 775-782.

Ruk, S. A., Khan, M. F., Khan, S. G., & Zia, S. M.

(2019). A survey on Adopting Agile Software

Development: Issues & Its impact on Software

Quality. In 2019 IEEE 6th International

Conference on Engineering Technologies and

Applied Sciences (ICETAS) (pp. 1-5). IEEE.

Schmidt, C. (2016). Agile software development

teams. Springer International Publishing

Srinivasan, J., & Lundqvist, K. (2010, February).

Agile in India: Challenges and lessons learned.

In Proceedings of the 3rd India software

engineering conference (pp. 125-130).

Tarhini, A., Yunis, M., & El-Kassar, A. N. (2018).

Innovative sustainable methodology for

managing in-house software development in

SMEs. Benchmarking: An International

Journal.

Venkatesh, V., Thong, J. Y., Chan, F. K., Hoehle,

H., & Spohrer, K. (2020). How agile software

development methods reduce work exhaustion:

Insights on role perceptions and organisational

skills. Information Systems Journal, 30(4), 733-

761.

http://creativecommons.org/licenses/by/4.0/

