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ABSTRACT 

Software reliability models are usually used to model the failure of software 

systems and prediction of its reliability potential. These models are however 

plagued with less accuracy, efficiency, and resource-effectiveness. Some soft 

computing methods have not yet been implemented to investigate their 

effectiveness and robustness for software fault prediction. Pi Sigma Neural 

Network (PSNN) software reliability prediction model was developed in this 

study for a better understanding of the modelling of software systems defects 

and reliability validated on 5 NASA promise datasets after carrying out data 

analysis using Seaborn on Python, working with raw data, pre-processed data 

with min-max normalization, Synthetic Minority Oversampling Technique 

(SMOTE) to overcome class imbalance problem between defective and non-

defective modules, and then correlational analysis with varying thresholds (0.8, 

0.85, 0.9 and 0.95) to reduce noise and get key features. The results obtained 

using the PSNN model showed for all the datasets good average performance 

for recall being highest at 79.8% based on no threshold, precision at 76.2% on 

0.9 threshold, f1-score with 75.6% on 0.95 threshold and accuracy at 74.8% with 

the same 0.95 threshold. A model based on recall is good at fault finding. 

Modifying the structure and architecture of the PSNN, like using a voting 

ensemble algorithm of varied combinations of PSNNs and using a firefly 

algorithm to optimize in the future, will improve the Neural Network technique. 
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INTRODUCTION 

Millions of computing devices keep on getting 

sold on a yearly basis (Alsop, 2021), and the 

number continues to rise, especially in the mobile 

industry, with a rate higher than laptop computers 

(O’Dea, 2021). There are millions of 

software/applications in stores and other places 

ready for the population to embrace, with Android 

users alone being capable of choosing out of 3.48 

million apps as of the first quarter of 2021, and 

more are being developed (Ceci, 2021). Software 

and computing devices are prone to failure over 

time, especially as they are released and updated 

and errors or faults are in them (Bharany et al., 

2022). 

Software reliability can be defined as the 

probability of failure-free software operation for a 

specified period of time in a specified 

environment (Sahu et al., 2021). Software 

reliability assessment is a means of mitigating 

software failure in order to safeguard devices and 

their contents by making them robust (Sahu et al., 

2021). Cases of software failure have been 

discussed over time, like the problems with the 

Nigerian Independent National Electoral 

Commission Election Result Viewing Portal 

failure, which affected the credibility of Nigerian 

February 2023 presidential election, various 

failures in SpaceX rockets exploding when 

mastering reusable spaceship/rockets, high impact 

bugs which affect vehicles/tools and ships causing 

accidents and losses of lives/properties and 

affecting financial systems, enterprise resource 

planning system which contributed to $160 

million loss for Hewlett-Packard Co. in 2004, and 

Advanced Automation System cancelled after 

$2.6 billion is spent by U.S. Federal Aviation 

Administration in year 2004 (Acheampong, 2023; 

Minow, 2023; Wu et al., 2021; Charette, 2005). 

Due to software failure capabilities and effects, 

finding the reliability of software is a major 

research problem globally (Khan et al., 2021). 

Software failure poses challenging risks to users 

of computers; thus, it is imperative to offer a safe 

platform for users by providing reliable methods 

against failures. Software reliability is very 

important because quite a number of systems, 

such as cars and nuclear plants, nowadays rely on 

software and for them to be resilient and reliable, 

it is of great necessity. It is important to minimize 

failure as much as possible, and this is achievable 

with the use of soft computing techniques.  

Software reliability is a key part of software 

quality (Sahu et al., 2021). Assumptions and 

abstractions must be made to simplify the 

problem, such as by using factors like failure rate 

or line of code, amongst others (Kather et al., 

2021; Prasad & Sangeetha, 2012). Software 

reliability modelling has matured to the point that 

meaningful results can be obtained by applying 

suitable models to the problem (Sahu et al., 2021). 

Reliability metrics are used to quantitatively 

express the reliability of the software product. The 

choice of which metric to adopt depends upon the 

type of system to which it applies and the 

requirements of the application domain (Kather et 

al., 2021; Kaur & Bahl, 2014).  

Soft computing is a form of techniques and 

algorithms that deal with situations where there 

are uncertainties, partial truth, and ambiguity, and 

helps in forecasting, optimizing, and decision-

making in real-life situations (Pandey et al., 2021; 

Burney et al., 2017). Soft computing is used in 

software engineering to predict and build models 

that enhance software reliability (Dhavakumar et 

al., 2018).  

Optimization algorithms are used in minimizing 

loss functions to get desired output. Some popular 

optimization techniques include gradient descent, 

particle swarm optimization, firefly algorithm, 
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and genetic algorithm. Combining soft computing 

models and optimization techniques optimally 

gives better and more capable models. When 

constructing models like Artificial Neural 

Networks, the number of neural nets and how they 

are linked could impact positively and, at times, 

even negatively. Using the right number of mini-

batches and learning rate contributes to giving 

models that are efficient and gives output at a rate 

that is desired with a high level of accuracy. 

Optimization is usually started by defining the 

loss/cost function and ends with minimizing it 

using optimization techniques. The choice of an 

optimization algorithm can make a difference 

between getting good prediction accuracy in hours 

or days. The applications of optimization are 

limitless and are widely researched topics in 

industry as well as academia (Diwekar, 2020; Gill 

et al., 2019).  

Arasteh (2018) proposed a combined method that 

includes Neural Network and Naïve Bayes 

algorithm to build a software fault prediction 

model. The paper used five traditional fault 

datasets from NASA via the Promise repository to 

construct and evaluate the prediction model. The 

result of the experiments shows higher prediction 

accuracy and precision than other methods. On 

average, the accuracy of the constructed 

prediction models by Naive Bayes, ANN, SVM, 

and the proposed method is 84.16%, 90.79%, 

87.46%, and 96.91%, respectively. The average 

precision of the constructed prediction models by 

Naive Bayes, ANN, SVM, and the proposed 

method are 0.72, 0.74, 0.50, and 0.99. However, 

the paper recommends a combination of other 

learning algorithms to build an efficient prediction 

model. 

Kaur and Sharma (2019) employed an ANN-

based software fault prediction (SFP) model to 

classify the fault-prone modules in the work, an 

ANN-based approach for SFP using object-

oriented metrics. The proposed model used the 

Levenberg Marquardt algorithm for the learning 

process. ANN was the reputable method for defect 

module prediction based on the results of the 

systems proposed. The experiments were 

performed on 18 public datasets from the 

PROMISE repository. Receiver operating 

characteristic curve, accuracy, and mean squared 

error (MSE) were taken as performance 

parameters for the prediction task. Results of the 

proposed systems signified that ANN provides 

significant results in terms of accuracy and error 

rate. In this study, values of ROC-AUC varied for 

different datasets. The average ROC-AUC for this 

study was approximately 0.92, which showed the 

usefulness of the proposed ANN prediction 

model. By the rate of error minimization, the 

accuracy was increased of the SFP technique. 

With great accuracy, the technique of ANN 

proposed can carry out defect module prediction 

after comparison of the method proposed with 

existing approaches. 

This research, therefore, proposes a modified pi 

sigma neural network to be combined with the 

Firefly algorithm to predict software reliability. 

Statement of the Problem 

Real-time systems tasks require robust and 

accurate software that will eradicate losses of 

lives, environmental disasters, and huge financial 

losses. Such domain includes space exploration 

life-critical systems like support systems in health 

care. Soft computing algorithms for software 

reliability are plagued with less accuracy, 

efficiency, and resource effectiveness (Son et al., 

2019). In addition, there is a need for a 

combination of learning algorithms to build an 

efficient and robust software reliability prediction 

model (Arasteh, 2018). Some of the machine 

learning techniques have never been implemented 

for software fault prediction (Pandey et al., 2021). 

Extensive comparisons between search-based 

techniques, machine learning techniques, and 

statistical techniques have not been carried out, 

and few search-based techniques like Artificial 

Immune Recognition System (AIRS) and Genetic 

Programming (GP) have good performance in 

predicting defects, but a number of studies that 

support this finding are very small (Son et al., 

2019). Additionally, machine learning and 

statistical techniques, on the other hand, have 

been evaluated extensively. To reach conclusions, 

it is important that search-based techniques are 
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also extensively evaluated (Son et al., 2019; 

Iftikhar et al., 2018). 

To address the aforementioned limitations and 

challenges, this research aims to address the 

combination of a modified pi sigma neural 

network with firefly algorithm to predict software 

reliability. This approach would aim to improve 

the accuracy, precision, recall, and f1-score (Son 

et al., 2019) of soft computing. 

METHODOLOGY  

The field of medicine, security, the stock market, 

pattern recognition, image compression etc., has 

all seen the application of neural networks in their 

domain to assist in solving a range of problems, 

and many have seen great successes (Sharma & 

Chandra, 2019). This work makes efforts to 

develop better models in performance for 

software reliability prediction using neural 

networks. 

For classifying faulty or non-faulty modules, we 

use neural network classifier to handle such data. 

However, in multilayered perceptron, slow 

training is observed due to errors propagated 

backwardly, while quick learning with little 

functionality is observed in a neural network that 

is fed forward due to linear threshold unit (Nayak 

et al., 2020; Nayak et al., 2016). Additionally, Pi 

sigma neural networks (PSNN) minimize this 

problem and allow for processing information in 

a faster manner, and they are usually 

computationally less intensive. 

This research is experimental in nature and 

quantitative in approach. The area of target and 

sample size is the NASA metrics data program of 

promise repository found on the internet 

consisting of datasets with sizes of roughly 500 to 

10,000 plus. Data analysis methods include a 

relplot used for understanding the relationship 

between variables, bar charts, countplots, a 

histogram used across variables that are 

categorical and a boxplot for sketching graphs to 

show groups of numerical data based on their 

quartiles; using seaborn in Python. 

On such basis, we organize our research in four 

stages: (1) developing a Pi Sigma Neural Network 

Software Reliability Prediction Model, (2) 

developing a voting technique based on the 

combination of varied pi sigma neural networks, 

(3) optimizing voting technique based on the 

combination of the varied pi sigma neural 

networks using firefly algorithm, (4) evaluating 

the model. 

The final step will give a good solution for 

software reliability modelling based on the pi 

sigma neural network. All models are evaluated 

on data coming from the Promise repository 

(Shirabad & Menzies, 2005). 

Data Collection 

To understand the applicability of our model, we 

have already performed an initial validation of the 

pi sigma neural network model on CM1, PC1, 

KC1, KC2, and JM1. Data was collected from the 

internet; the Promise dataset (Shirabad & 

Menzies, 2005) was downloaded from the NASA 

repository. This is a PROMISE Software 

Engineering Repository data set made publicly 

available in order to encourage repeatable, 

verifiable, refutable, and/or improvable predictive 

models of software engineering. The data was 

used for software defect prediction. The dataset 

was created by NASA, then the NASA Metrics 

Data Program in the year 2004.  

Table 1: Dataset description 

Dataset Language Instances Attributes Faulty modules (% ) 

CM1 C 498 21 9.83 

PC1 C 1109 21 6.94 

KC1 C++ 2109 21 15.45 

KC2 C++ 522 21 20.49 

JM1 C 10885 21 19.35 
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The dataset represents defects occurring in the 

software system. Accuracy, precision, recall, and 

f1-score were used for measurement.  

Data comes from McCabe and Halstead features 

extractors of source code. These features were 

defined in the 70s in an attempt to objectively 

characterize code features that are associated with 

software quality. The McCabe and Halstead 

measures are “module”-based where a “module” 

is the smallest unit of functionality. In C or 

Smalltalk, “modules” would be called “function” 

or “method”, respectively. CM1 is a NASA 

spacecraft instrument that characterizes code 

features that are associated with software quality 

and are written in “C”. PC1 is flight software for 

an Earth-orbiting satellite that characterizes code 

features that are associated with software quality 

and are written in “C”. KC1 is a “C++” system 

implementing storage management for receiving 

and processing ground data that characterizes 

code features that are associated with software 

quality. KC2 has data from C++ functions. 

Science data processing is another part of the 

same project as KC1; different personnel than 

KC1. Shared some third-party software libraries 

with KC1, but no other software overlap. It 

characterizes code features that are associated 

with software quality. JM1 is written in “C” and 

is a real-time predictive ground system: that uses 

simulations to generate predictions and 

characterizes code features that are associated 

with software quality. Table 2 below shows the 

data structure of the datasets. 

Table 2: Data structure of the datasets. 

Attribute Name Attribute description 

Loc McCabe’s line count of code 

v(g) McCabe’s “cyclomatic complexity.” 

ev(g) McCabe’s “essential complexity.” 

iv(g) McCabe's “design complexity.” 

N Halstead total operators + operands 

V Halstead “volume” 

L Halstead “program length.” 

D Halstead “difficulty” 

I Halstead “intelligence” 

E Halstead “effort” 

B Halstead 

T Halstead’s time estimator 

lOCode Halstead’s line count 

lOComment Halstead’s count of lines of comments 

lOBlank Halstead’s count of blank lines 

lOCodeAndComment  

uniq_Op unique operators 

uniq_Opnd unique operands 

total_Op total operators 

total_Opnd total operands 

branchCount of the flow graph 

Defects module has/has not one or more reported defects 

 

Data Analysis 

From Figure 1, it was found that the data have a 

common/similar distribution for all the 

independent features plotted against each other 

except when an independent feature is plotted 

against ‘l’ like in Fig. 2 or against 

‘locCodeAndComment’ like in Figure 3. Figure 2 

shows there is an inverse relationship between ‘l’ 

and Figure all the other independent variables 

except when plotted against 

‘locCodeAndComment’ like in Figure 3. 
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Figure 1: Relationship between ‘v(g)’ and ‘loc’ 

 

Figure 2: Relationship between ‘l’ and ‘loc’ 

 

Figure 3: ‘l’ vs ‘locCodeAndComment’ 

 

Figure 4: ‘loc’ vs ‘locCodeAndComment’ 

 

Figure 1 shows that relationships between 

independent variables and other independent 

variables, except for the relationship with ‘l’ and 

‘locCodeAndComment’, have a 

direct/proportional relationship. It shows that in 

the relationship of most of the independent 

features, with the exception of ‘l’ and 

‘locCodeAndComment’, when one increases, the 

others also increase. Figure 4 shows that when 

‘loc’ or other independent variables is close to 0 

on the x-axis, ‘locCodeAndComment’ has most of 

its values on the line relative to the independent 

variable or very close to it, with a few exceptions 

that are scattered. 

In a similar manner, using a bar chart, it was 

revealed that defect modules had a higher count 

compared to all the other independent features 

like in Figure 5, except when plotted against ‘l’ 

like in Figure 6. Figure 5 shows how the defective 

modules have higher values in all the independent 

features (except for ‘l’) compared to non-

defective modules. Countplot showed in Figure 7 

there is a class imbalance, with non-defective 

modules being a lot higher than defective 

modules. 
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Figure 5: Bar chart of ‘loc’ and defects 

 

Figure 6: Bar chart of ‘l’ and defects 

 

Figure 7: Countplot showing number of non-defective modules compared to defective ones 

 

Boxplot, on the other hand, showed that the 

median, interquartile range and total distribution 

of quantitative data within whiskers of defective 

modules in relationship to other features is 

higher/highest in all (like in Figure 8): this 

indicates higher values of independent features 

usually result in faults. Exceptions are of features’ 

l’ (see Figure 9), which was the opposite because 

of the inverse relationship, and 

‘locCodeAndComment’ (Figure 10), which had 
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equal measures, which shows most of the values 

are at 0 except outliers. Additionally, the boxplots 

have wide outliers.  

Figure 8: Boxplot of ‘loc’ against defects 

 

Figure 9: Boxplot of ‘l’ against defects 

 

Figure 10: Boxplot of ‘locCodeAndComment’ against defects 

 

SIMULATION AND RESULTS 

Comparison of raw data with pre-processed data 

was carried out while using CM1 dataset with 

PSNN using back propagation gradient descent 

(Shin & Ghosh, 1991; Nayak et al., 2016; Nayak 

et al., 2020) for training with epoch of 1001 with 

linear activation for 3 hidden neurons and sigmoid 

as activation for the output in this research. Data 

was split with 70% for training and 30% for 

testing, while MSE was used for training the 

model. With raw data, we got roughly 10% 

accuracy for both training and testing; while with 

pre-processed data using min-max normalization 

(Henderi et al., 2021), the accuracy rose to 90% 

roughly for both the training and testing set, but it 

was observed that other performance metrics 

(precision, recall, f1-score) reflected imbalance 

based on reporting and the report for the defective 

module was poor. 

http://creativecommons.org/licenses/by/4.0/


East African Journal of Information Technology, Volume 6, Issue 1, 2023 
Article DOI: https://doi.org/10.37284/eajit.6.1.1366 

 

143 | This work is licensed under a Creative Commons Attribution 4.0 International License. 

To solve the imbalance problem, SMOTE 

oversampling (Prasetiyo et al., 2021) was used to 

oversample the defective instances to balance up 

with the non-defective module. Upon simulation, 

accuracy for the training set was 73%, while for 

the testing set, 65%. Additionally, there was a 

great improvement in the other performance 

metrics. 

To further improve accuracy and the other 

performance metrics, correlational analysis (Son 

et al., 2019) was performed using thresholds of 

0.8, 0.85, 0.9 and 0.95. Figure 11 shows the 

results for CM1. 

Figure 11: Results of various thresholds indicating performance measure for CM1 (in %) 

 

Accuracy at the 0.9 threshold had the highest 

value at 75%, while precision at the 0.9 threshold 

had the highest value at 78%. Recall at no 

threshold had the highest value at 77%, while the 

F1 score at 0.9 threshold had the highest value at 

75%.  

Similar data analysis for CM1 was carried out for 

PC1, KC1, KC2 and JM1, and it was found they 

shared a common distribution with that of CM1.  

In likewise the same manner, similar validation 

was carried out using PC1, as can be seen in 

Figure 12. 

Figure 12: Results of various thresholds indicating performance measure for PC1 (in %) 
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Accuracy for no threshold has a maximum value 

of 85%; Precision has the highest score of 84% for 

the threshold of 0.9. The recall had the highest 

score of 96% for both no threshold and 0.95. On 

the other hand, the F1 score at no threshold and 

0.95 gave the best value of 86%. 

Similar validation was carried out using KC1, as 

can be seen in Figure 13. 

Figure 13: Results of various thresholds indicating performance measure for KC1 (in %) 

 

Accuracy at 0.85 and 0.95 thresholds have the best 

value of 73%, while precision at 0.85 thresholds 

has the best value of 70%. Recall, on the other 

hand, no threshold has the best value of 84%, and 

lastly, F1 score at no threshold, 0.85 and 0.95 

thresholds give the maximum value of 74%. 

In likewise the same manner, a similar simulation 

was carried out using KC2, as can be seen in 

Figure 14. 

Figure 14: Results of various thresholds indicating performance measure for KC2 (in %) 

 

Accuracy at 0.85 and 0.95 thresholds give the best 

value of 80%; Precision max value is 83% at the 

0.9 threshold. Recall on the other hand at no 

threshold has the highest value at 86% while F1 

score at .85 threshold give best value of 81%. 
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In the same manner, similar validation was carried 

out using JM1, as can be seen in Figure 15. 

Figure 15: Results of various thresholds indicating performance measure for JM1 (in %) 

 

Accuracy at 0.9 threshold gives the best value of 

66% while precision is max at 0.8 threshold 

having 71%. Lastly, recall has 70% for a 0.95 

threshold, while F1 score at 0.95 threshold gives 

the best value of 67%. 

Performance Metrics 

Recall happens to be the most popular 

performance measure (Son et al., 2019) for 

software defect prediction. Recall helps the model 

to evaluate how many defects or non-defects are 

predicted correctly out of the total number of 

defects or non-defects. Precision is also one of the 

most popular performance measures, followed by 

accuracy and f1-score (Son et al., 2019). Precision 

helps a model evaluate how many defects or non-

defects are correctly predicted out of a total 

number of predicted defects or non-defects. 

Accuracy tells us how correctly a model predicts 

the overall defective and non-defective models in 

relationship to all instances (Son et al., 2019). 

Lastly, F1-score gives the harmonic mean based 

on precision and recall. 

DISCUSSION 

Considering recall, the most popular performance 

metric (Son et al., 2019) in software fault 

prediction, no threshold performed best for the 

four datasets (value of 77% for CM1, 84% for 

KC1, 86% for KC2, 96% for PC1) with one out 

the four being a tie with .95 threshold (PC1) while 

for the last dataset JM1, it performed the 4th best 

out of all the thresholds with a value of 56% 

unlike the higher values gotten for the other 

datasets. This could be because JM1 is a huge 

dataset consisting of roughly 11,000 samples 

while the rest consist of samples less than 2200. 

This shows that recall gives us a good and useful 

model. The average value for the recall is 79.8%.  

On the other hand, considering precision, the 0.9 

threshold performed the best, having maximum 

value for three datasets with values of 78% for 

CM1, 83% for KC2 and, 84% for PC1, 68% for 

both KC1 and JM1. In likewise the same manner, 

precision gives us a good and useful model. The 

average is 76.2%. 

Accuracy for the testing set had maximum value 

for CM1 at 75% and 0.9 threshold, PC1 at 85% 

with no threshold, KC1 at 73% with 0.85 and 0.95 

threshold, KC2 at 80% with 0.85 and 0.95 

threshold while JM1 at 66% with 0.9 threshold. 

Since 0.85 and 0.95 are the most re-occurring, 

they are going to be further considered. Using 

0.85 threshold for CM1, accuracy is 67%, PC1 is 

70%, KC1 is 73%, KC2 is 80% and JM1 is 65%. 

While using threshold of 0.95, CM1 accuracy is 

0
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72%, PC1 is 84%, KC1 is 73%, KC2 is 80%, and 

JM1 is 65%. From analysis, it can be concluded 

that 0.95 threshold gives the best predictive model 

based on accuracy. The average is 74.8%. 

Lastly, considering f1 score, CM1 at 0.9 threshold 

gives 75%, PC1 at no threshold and 0.95 threshold 

gives 86%, KC1 at no threshold, 0.85 and 0.95 

threshold gives 74%, KC2 at 0.85 threshold gives 

81% while JM1 at 0.95 threshold gives 67%. As 

the 0.95 threshold is the max appearing in three 

datasets for PC1 at 86%, KC1 at 74% and JM1 at 

67%, based on analysis, this threshold gives the 

best predictive model based on f1-score. 

Additionally, for the same threshold, CM1 has a 

value of 72%, while KC2 is 79%. The average is 

75.6%. 

But these results are from the simple pi sigma 

neural network model without any significant 

modification to its structure/nature, unlike the 

next stages. 

CONCLUSION 

This paper showed the development of a software 

reliability model using a neural network approach, 

in particular, the pi sigma neural network. Results 

show that this model has moderate to good 

performance.  

The average values as reported for recall is 79.8%, 

precision is 76.2%, f1-score is 75.6% and lastly, 

accuracy is 74.8%. Based on the value, theory, 

data and desires of the software project, the best 

predictive model that can show a good measure of 

faults in the system is recall, followed by the 

others based on their value and needs of software 

developers as reported. The developed reliability 

prediction model for software helps the software 

testers to focus their effort on the error-prone 

modules instead of the modules as a whole. With 

cost minimal, the developers of the software can 

build projects that are even better in reliability. 

Future Work 

The first and simple stage has shown moderate to 

good results in prediction abilities. The second 

stage is developing a voting technique based on 

the varied combination of pi-sigma neural 

networks, which is going to be applied to the 

software reliability prediction modelling. The 

third stage is optimizing the voting technique 

based on the varied combination of pi-sigma 

neural networks using the Firefly algorithm. The 

firefly algorithm has shown good results on 

optimization problems in the literature. The fourth 

stage is evaluating the model. The combination of 

these approaches and the developed model, 

theoretically, will give better results on the above-

mentioned dataset and other similar ones from 

NASA/promise repository. 
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