Phytochemical Analysis of Ficus saussureana DC., Clerodendrum rotundifolium Oliv., and Microglossa pyrifolia (Lam.) O. Ktze as Important Antidiabetic and Antihypertensive Plants
Abstract
Phytochemicals or secondary metabolites are key constituents of plants that play a major role in treating and alleviating human ailments. They possess numerous therapeutic and physiological properties, including disease prevention and treatment, symptom management, and the promotion of physical and mental well-being. Although 80% of the global population relies on plants for medicinal purposes, and analysing the phytochemical components of traditionally used plants is crucial for understanding their potential to treat specific diseases, many of these plants remain unresearched. This study assessed the phytochemical composition of Ficus saussureana DC., Clerodendrum rotundifolium Oliv., and Microglossa pyrifolia (Lam.) O. Ktze qualitatively and quantitatively via standard methods. The gas chromatography-mass spectrometry (GC-MS) method was used to detect general compounds in the methanol extracts. The results indicated the presence of most of the analysed compounds, such as alkaloids, steroids, phenols, tannins, flavonoids, coumarins, and terpenoids. The highest amounts of polyphenols (217±25.05 mg/g) and tannins (179.75±3.44 mg/g) were detected in the Ficus saussureana methanolic extract, whereas the highest amounts of flavonoids (28.75±0.98 mg/g), saponins (225.07±4.11 mg/g), and alkaloids (116.15±3.73 mg/g) were detected in the Clerodendrum rotundifolium methanolic extract. GC-MS profiles revealed 14 compounds in Ficus saussureana and 30 compounds in Clerodendrum rotundifolium and Microglossa pyrifolia. Several of the identified compounds demonstrate pharmacological activities relevant to the treatment of diabetes, hypertension, and various other human ailments. This research validates the assertions of traditional herbalists concerning the three selected plants, uncovering compounds with potential antidiabetic and antihypertensive properties. These findings not only support their traditional use but also highlight their potential for future drug discovery
Downloads
References
, M. M., Emami, S. N., Byamukama, R., Faye, I., & Borg-Karlson, A.-K. (2016). Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. Journal of Ethnopharmacology, 186(2016), 14–19. https://doi.org/10.1016/j.jep.2016.03.047
Agidew, M. G. (2022). Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bulletin of the National Research Centre, 46(1), 87. https://doi.org/10.1186/s42269-022-00770-8
Ahad, B., Shahri, W., Rasool, H., Reshi, Z. A., Rasool, S., & Hussain, T. (2021). Medicinal Plants and Herbal Drugs: An Overview. Medicinal and Aromatic Plants. https://doi.org/10.1007/978-3-030-58975-2_1
Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430
Al-marzoqi, A. H., Hadi, M. Y., & Hameed, I. H. (2016). Determination of metabolites products by Cassia angustifolia and evaluate antimicobial activity. Journal of Pharmacognosy and Phytotherapy, 8(2), 25–48. https://doi.org/10.5897/JPP2015.0367
Ali, A., Javaid, A., & Shoaib, A. (2017). GC-MS Analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha, 35(2017), 1–8. https://doi.org/10.1590/S0100-83582017350100046
Alqethami, A., & Aldhebiani, A. Y. (2021). Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi Journal of Biological Sciences, 28(1), 805–812. https://doi.org/10.1016/j.sjbs.2020.11.013
Amankwaah, F., Addotey, J. N., Orman, E., Adosraku, R., & Amponsah, I. K. (2023). A comparative study of Ghanaian propolis extracts: Chemometric analysis of the chromatographic profile, antioxidant, and hypoglycemic potential and identification of active constituents. Scientific African, 22(2023), e01956. https://doi.org/10.1016/j.sciaf.2023.e01956
Amarowicz, R. (2009). Squalene : A natural antioxidant? European Journal of Lipid Science and Technology, 111(5), 411–412. https://doi.org/10.1002/ejlt.200900102
Anbuselvi, S., Jeyanthi Rebecca, L., Sathish Kumar, M., & Senthilvelan, T. (2012). GC-MS study of phytochemicals in black gram using two different organic manures. Journal of Chemical and Pharmaceutical Research, 4(2), 1246–1250.
Arora, S., & Meena, S. (2017). GC-MS Profiling of Ceropegia bulbosa Roxb. var. bulbosa, an endangered plant from Thar Desert, Rajasthan. The Pharma Innovation Journal, 6(11), 568–573. Retrieved from www.thepharmajournal.com
Bajaj, S., & Khan, A. (2012). Mini Review Antioxidants and diabetes. Indian Journal of Endocrinology and Metabolism, 16(S2), S267–S271. https://doi.org/10.4103/2230-8210.104057
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., … Bouyahya, A. (2022). Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants, 11(10), 1912. https://doi.org/10.3390/antiox11101912
Banu, K. S., & Cathrine, L. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25–32. Retrieved from www.arcjournals.org
Biapa Prosper-Cabral N., Gabriel A. Agbor, Julius E. Oben, J. Y. N. (2007). Phytochemical Studies and Antioxidant Properties of Four medicinal plants used in cameroon. African Journal of Traditional, Complementary and Alternative Medicines, 4(4), 495–500.
Credo, D., Masimba, P., Machumi, F., & Heydenreich, M. (2018). Isolation of stigmasterol from 80 % aqueous ethanol root extract of bridelia duvigneaudii J.Leon and its hypoglyceamic activity on oral glucose loaded white albino mice. International Journal of Research in Pharmacy and Chemistry, 8(4), 492–501.
Crozier, A., Jaganath, I. B., & Clifford, M. N. (2006). Phenols, Polyphenols and Tannins: An Overview. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet, 1, 1–25. https://doi.org/10.1007/978-3-031-18587-8_5
Elekofehinti, O. O. (2015). Saponins: Anti-diabetic principles from medicinal plants - A review. Pathophysiology, 22(2), 95–103. https://doi.org/10.1016/j.pathophys.2015.02.001
Gang, R., Matsabisa, M., Okello, D., & Kang, Y. (2023). Ethnomedicine and ethnopharmacology of medicinal plants used in the treatment of diabetes mellitus in Uganda. Applied Biological Chemistry, 66(1). https://doi.org/10.1186/s13765-023-00797-z
Gracelin Herin Sheeba, D., John de Britto, A., & Benjamin Jeya Rathna Kumar, P. (2013). Qualitative and quantitative analysis of phytochemicals in five Pteris species. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL.1), 105–107.
Gu, H., Jiang, Z. Q., Wang, M. Y., Jiang, H. Y., Zhao, F. M., Ding, X., … Zhan, Z. (2013). 5-Hydroxymethylfurfural from wine-processed Fructus corni inhibits hippocampal neuron apoptosis. Neural Regeneration Research, 8(28), 2605–2614. https://doi.org/10.3969/j.issn.1673-5374.2013.28.002
Gupta, R., Sharma, A. K., Sharma, M. C., Dobhal, M. P., & Gupta, R. S. (2012). Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. Natural Product Research: Formerly Natural Product Letters, 26:12, 1125-1129, (October 2012), 37–41.
Hashmi, H. F., Bibi, S., Anwar, M., & Rashid Khan, M. (2021). Qualitative and Quantitative Analysis of Phytochemicals in Lepidium Pinnatifidum Ledeb. Sch Int J Tradit Complement Med, 4(5), 67–75. https://doi.org/10.36348/sijtcm.2021.v04i05.002
Heneman, K., & Zidenberg-Cherr, S. (2008). Nutrition and Health Info Sheet: Phytochemicals. Nutrition and Health Info Sheet: Phytochemicals. https://doi.org/10.3733/ucanr.8313
Huang, P., Duan, X. bing, Tang, Z. zhao, Zou, Z. xing, Song, W. min, Gao, G., … Xu, Y. ying. (2023). Betulinaldehyde exhibits effective anti-tumor effects in A549 cells by regulating intracellular autophagy. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-27580-w
Hunter, J. E., Zhang, J., & Kris-Etherton, P. M. (2010). Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. American Journal of Clinical Nutrition, 91(1), 46–63. https://doi.org/10.3945/ajcn.2009.27661
Hussain, I., Ullah, R., Ullah, R., Khurram, M., Ullah, N., Baseer, A., … Khan, N. (2019). Phytochemical analysis of selected medicinal plants Iqbal. African Journal of Biotechnology, 10(38), 7487–7492. https://doi.org/10.5897/AJB10.2130
Ingole, S. N. (2016). Phytochemical analysis of leaf extract of Ocimum americanum L. (Lamiaceae) by GCMS method. World Scientific News, 37(2016), 76–87.
Jain, A. B., & Jain, V. A. (2012). Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. Journal of Clinical and Diagnostic Research, 6(10), 1624–1628. https://doi.org/10.7860/JCDR/2012/4791.2625
Javaid, A., Ferdosi, M. F. H., Khan, I. H., Shoaib, A., Saeed, H. M., & Hassan, M. A. U. (2021). Biochemical analysis of flowers of Vinca major, a medicinal weed plant of hilly areas of Pakistan. Pak. J. Weed Sci. Res., 27(4), 537–546. https://doi.org/10.28941/pjwsr.v27i4.1014
Kavitha R. (2021). Phytochemical Screening and Gc-Ms Analysis of Bioactive Compounds Present in Ethanolic Extracts of Leaf and Fruit of Trichosanthesis Dioica Roxb. International Journal of Pharmaceutical Sciences and Research, 12(5), 2755–2764. https://doi.org/10.13040/IJPSR.0975-8232.12(5).2755-64
Khan, A. M., Qureshi, R. A., Ullah, F., Gilani, S. A., Nosheen, A., Sahreen, S., … Murad, W. (2011). Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. Journal of Medicinal Plant Research, 5(25), 6017–6023. https://doi.org/10.5897/JMPR11.869
Khan, A. N., Khan, R. A., Ahmad, M., & Mushtaq, N. (2015). Role of antioxidant in oxidative stress and diabetes mellitus. Journal of Pharmacognosy and Phytochemistry 2015; 3(6): 217-220, 3(6), 217–220.
Kim, D. H., Han, S. I., Go, B., Oh, U. H., Kim, C. S., Jung, Y. H., … Kim, J. H. (2019). 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer Research, 39(12), 6685–6691. https://doi.org/10.21873/anticanres.13883
Kooshki, A., & Hoseini, B. B. L. (2014). Phytochemicals and Hypertension. Shiraz E Medical Journal, 15(1). https://doi.org/10.17795/semj19738
Kotteswari, M., Prabhu, K., Rao, M. R. K., Mahitha, P., Balaji, T. K., Dinakar, S., & Sundaram, R. L. (2020). The gas chromatography-mass spectrometry study of one Ayurvedic medicine Ashtachurnam. Drug Invention Today, 13(5), 663–667.
Kumar, A., Aswal, S., Semwal, R. B., Chauhan, A., Joshi, S. K., & Semwal, D. K. (2019). Role of plant-derived alkaloids against diabetes and diabetes-related complications: a mechanism-based approach. Phytochemistry Reviews, 18(5), 1277–1298. https://doi.org/10.1007/s11101-019-09648-6
Kumar, N. A., Jadhav, J., Dehar, P. S., Singh, P., Gupta, P., Mondal, K., & Kumar, S. (2024). Qualitative phytochemical screening of a medicinally ornamental wild fern species (Pteris vittata L.) of India. Plants & Secondary Metabolites, 1. https://doi.org/10.5281/zenodo.13742393
Li, H., Yao, Y., & Li, L. (2017). Coumarins as potential antidiabetic agents. Journal of Pharmacy and Pharmacology, 69(10), 1253–1264. https://doi.org/10.1111/jphp.12774
Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. Journal of Nutrition, 134(12 SUPPL.), 3479–3485. https://doi.org/10.1093/jn/134.12.3479s
Longbap, B.D1, Ushie, O A1*, Ogah, E.1, Kendenson, A. C2, Nyikyaa, J. T. (2018). Phytochemical Screening and Quantitative Determination of Phytochemicals in Leaf Extracts of Hannoa undulata. International Journal of Medicinal Plants and Natural Products, 4(2), 32–38. https://doi.org/10.20431/2454-7999.0402005
Mgbeje, B. I. A., & Abu, C. (2020). Chemical Fingerprinting of Nauclea latifolia, an Antidiabetic Plant, Using GC-MS. Journal of Complementary and Alternative Medical Research, 9(4), 25–34. https://doi.org/10.9734/jocamr/2020/v9i430148
Morsy, N. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry, 13(1), 7–21. https://doi.org/10.3233/MGC-130117
Naksing, T., Teeka, J., Rattanavichai, W., Pongthai, P., Kaewpa, D., & Areesirisuk, A. (2021). Determination of bioactive compounds, antimicrobial activity, and the phytochemistry of the organic banana peel in Thailand. Bioscience Journal, 37, 1–11. https://doi.org/10.14393/BJ-v37n0a2021-56306
Nandhini, R. S., Nithya, R. N., & Vidhya, K. (2021). GC-MS analysis of Phytochemical compounds in different extracts of Curculigo orchiodes. Research Journal of Pharmarcy and Technology, 14(8), 4355–4360. https://doi.org/10.52711/0974-360X.2021.00756
Nnko, S. S., Kaddumukasa, M., Sekagya, Y. H. K., & Kyayesimira, J. (2024). Ethnobotanical Survey of Phytotherapeutic Management of Diabetes and Hypertension Diseases in Mpigi District, Uganda. East African Journal of Science, Technology and Innovation, 6(1), 1–35. https://doi.org/10.37425/38sndv83
Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P. (2022). Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants, 11(15). https://doi.org/10.3390/plants11152011
Nualkaew, S., Padee, P., & Talubmook, C. (2015). Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-O-β-D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. leaf extract. Journal of Medicinal Plants Research, 9(20), 629–635. https://doi.org/10.5897/JMPR2014.5722
Obode, O. C., Adebayo, A. H., Omonhinmin, C. A., & Yakubu, O. F. (2020). A systematic review of medicinal plants used in Nigeria for hypertension management. International Journal of Pharmaceutical Research, 12(4), 2231–2276. https://doi.org/10.31838/ijpr/2020.12.04.142
Odhiambo, R. S., Kareru, P. G., Mwangi, E. K., & Onyango, D. W. (2019). Antioxidant Activity, Total Phenols, Flavonoids and LCMS Profile of Chamaecrista hildebrandtii (Vatke) Lock and Clerodendrum rotundifolium (Oliv.). European Journal of Medicinal Plants, 26(3), 1–11. https://doi.org/10.9734/ejmp/2018/v26i330093
Ordoñez, A. A. L., Gomez, J. D., Vattuone, M. A., & Isla, M. I. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry, 97(3), 452–458. https://doi.org/10.1016/j.foodchem.2005.05.024
Perumal, G. M., K, P., MRK, R., S., J. C., J, K., & M, K. (2021). ‘The Gc Ms Analysis Of Ethyl Acetate Extract Of One Herbal Plant, ‘Muntingiacalabura.’ Natural Volatiles & Essential Oils, 8(4), 6338–6346.
Perumal, G. M., Prabhu, K., S, R. M. R. K. J. C., & Kalaivannan, J. (2021). The GC MS Analysis of Ethyl Acetate Extract Of ‘Flueggea Leucopyrus. Natural Volatiles & Essential Oils, 8(5), 4035–4040.
Ponnamma, S. U., & Manjunath, K. (2012). GC-MS analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (NEES) T. Anders. International Journal of Pharma and Bio Sciences, 3(3), 570–576.
Prakasia, P. P., & Nair, A. S. (2015). Chemical fingerprint of essential oil components from fresh leaves of Glycosmis pentaphylla (Retz.) Correa. ~ 50 ~ The Pharma Innovation Journal, 3(12), 50–56. Retrieved from www.thepharmajournal.com
Priyadarshini, G., Elizabeth, A. A., Anthony, J., Rao, M. R. K., Prabhu, K., Ramesh, A., & Krishna, V. (2017). The GC MS Analysis of One Medicinal Plant, Premna Tomentosa. Journal of Pharmaceutical Sciences and Research, 9(9), 1595–1597.
Purushothaman, R., Vishnuram, G., & Ramanathan, T. (2024). Isolation and identification of n-Hexadecanoic acid from Excoecaria agallocha L. and its antibacterial and antioxidant activity. Journal of Emerging Technologies and Innovative Research, 11(1), 332–342.
Rahimi, R., Nikfar, S., Larijani, B., & Abdollahi, M. (2005). Review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy, 59(2005), 365–373. https://doi.org/10.1016/j.biopha.2005.07.002
Rajendiran, D., Packirisamy, S., & Gunasekaran, K. (2018). A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research, 11(2), 48–53. https://doi.org/10.22159/ajpcr.2018.v11i2.23241
Rao, M. R. K., Anisha, G., Prabhu, K., Shil, S., & Vijayalakshmi, N. (2019). Preliminary phytochemical and gas chromatography-mass spectrometry study of one medicinal plant Carissa carandas. Drug Inivitation Today, 12(7), 1629–1630.
Sajjad, S., Israr, B., Ali, F., & Pasha, I. (2020). Investigating the effect of phytochemicals rich watermelon seeds against hypertension. Pakistan Journal of Agricultural Sciences, 57(4), 1157–1164. https://doi.org/10.21162/PAKJAS/20.9231
Santos, C. C. de M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., … de Almeida, R. N. (2013). Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models. Neuroscience Journal, 2013(1), 949452. https://doi.org/10.1155/2013/949452
Shehadeh, M. B., Suaifan, G. A. R. Y., & Abu-Odeh, A. M. (2021). Plants secondary metabolites as blood glucose-lowering molecules. Molecules, 26(14), 4333. https://doi.org/10.3390/molecules26144333
Shen, M. C., Zhao, X., Siegal, G. P., Desmond, R., & Hardy, R. W. (2014). Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice. PLoS ONE, 9(9), e104083. https://doi.org/10.1371/journal.pone.0104083
Shreenithi, S., Vishnupriya, V., Ponnulakshmi, R., Gayathri, R., Madhan, K., Shyamaladevi, B., & Selvaraj, J. (2019). In silico and in vivo approach to identify the antidiabetic activity of lupeol. Drug Invention Today, 11(5), 1113–1116.
Singleton, V. L., Orthofer, R., & Lamuela-Ravento’s, R. M. (1999). Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology, 299(1974), 152–178. https://doi.org/10.1016/j.scienta.2016.11.004
Sivakumaran, G., Prabhu, K., Krishna Rao, M. R., Jones, S., Sundaram, R. L., Ulhas, V. R., & Vijayalakshmi, N. (2019). Gas chromatography–mass spectrometry analysis of one Ayurvedic oil, Triphaladi Thailam. Drug Invention Today, 11(10), 2679–2683.
Siyuan, S., Tong, L., & Liu, R. H. (2018). Corn phytochemicals and their health benefits. Food Science and Human Wellness, 7(3), 185–195. https://doi.org/10.1016/j.fshw.2018.09.003
Suganthy, M., & Gajendra, C. (2020). Chemical characterization of Strychnos nux-vomica L. leaves for biopesticidal properties using GC-MS. International Journal of Chemical Studies, 8(1), 1112–1116. https://doi.org/10.22271/chemi.2020.v8.i1o.8398
Sun, C., Zhao, C., Guven, E. C., Paoli, P., Simal-Gandara, J., Ramkumar, K. M., … Xiao, J. (2020). Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1), 18–44. https://doi.org/10.1002/fft2.15
Tejavathi, D. H., & Sujatha, B. S. (2019). Phytochemical Quantification and Antioxidant Potential of Curcuma karnatakensis [White turmeric] – An endemic taxon. International Journal of Pharmacy and Biological Sciences, 9(1), 916–924. https://doi.org/10.21276/ijpbs.2019.9.1.117
Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality, 2019(1), 8178294. https://doi.org/10.1155/2019/8178294
Tyagi, T., & Agarwal, M. (2017). Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of Pharmacognosy and Phytochemistry, 6(1), 195–206.
Vassiliou, E. K., Gonzalez, A., Garcia, C., Tadros, J. H., Chakraborty, G., & Toney, J. H. (2009). Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF- α both in vitro and in vivo systems. Lipids in Health and Disease, 8(25), 1–10. https://doi.org/10.1186/1476-511X-8-25
Verma, R., Kumar, D., Nagraik, R., Sharma, A., Tapwal, A., Puri, S., … Kuca, K. (2021). Mycorrhizal inoculation impact on Acorus calamus L. - An ethnomedicinal plant of western Himalaya and its in silico studies for anti-inflammatory potential. Journal of Ethnopharmacology, 265(2021), 113353. https://doi.org/10.1016/j.jep.2020.113353
Verma, T., Sinha, M., Bansal, N., Yadav, S. R., Shah, K., & Chauhan, N. S. (2021). Plants Used as Antihypertensive. Natural Products and Bioprospecting, 11, 155–184. https://doi.org/10.1007/s13659-020-00281-x
Vijay, P., & Vimukta, S. (2014). The Role of Natural Antioxidants in Oxidative Stress Induced Diabetes Mellitus. Research Journal of Pharmaceutical Sciences, 3(4), 1–6.
Vijayalingam, T. A., & Rajesh, N. V. (2019). Seagrasses as potential source of fodder for livestock: Complete proximate and gas chromatography-mass spectrometry (GC-MS) analysis. Annals of Phytomedicine: An International Journal, 8(2), 93–98. https://doi.org/10.21276/ap.2019.8.2.10
Vijayalingam, T. A., & Rajesh, N. V. (2020). Seagrasses as potential source of fodder for livestock : Complete proximate and gas chromatography-mass spectrometry (GC- MS) analysis. Annals of Phytomedicine, 8(2), 93–98. https://doi.org/10.21276/ap.2019.8.2.10
Wang, J., Huang, M., Yang, J., Ma, X., Zheng, S., Deng, S., … Yang, X. (2017). Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food & Nutrition Research, 61(1). https://doi.org/10.1080/16546628.2017.1364117
Widyawati, T., Syahputra, R. A., Syarifah, S., & Sumantri, I. B. (2023). Analysis of Antidiabetic Activity of Squalene via In Silico and In Vivo Assay. Molecules, 28(2023), 1–14. https://doi.org/10.3390/ molecules28093783
Yeshi, K., Crayn, D., Ritmejeryte, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313.
Zayed, M. Z., & SAMLING, B. (2016). Phytochemical constituents of the leaves of Leucaena leucocephala from Malaysia. International Journal of Pharmacy and Pharmaceutical Sciences, 8(12), 174–179. https://doi.org/10.22159/ijpps.2016v8i12.11582
Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., … Chen, T. (2013). In Vitro Antioxidant and Antiproliferative Activities of 5‑Hydroxymethylfurfural. Journal of Agricultural and Food Chemistry, 61(2013), 10604–10611. https://doi.org/10.1021/jf403098y
Copyright (c) 2026 Silas Sangito Nnko, Martha Kaddumukasa, Juliet Kyayesimira

This work is licensed under a Creative Commons Attribution 4.0 International License.