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ABSTRACT 

Kenya's life expectancy increased from 55.5 to 64.7 years (1990-2024), but years 

lived in poor health (GAP) have not declined proportionally, creating substantial 

public health planning challenges. Evidence-based forecasting of GAP trends is 

essential for health system resource allocation, yet no systematic forecasting 

methodologies exist for East African health systems. This study compared 

ARIMA and LSTM forecasting models for predicting Kenya's GAP trends and 

established methodological frameworks for health system planning across East 

Africa. Comparative time series analysis was conducted using Global Burden of 

Disease Study 2021 data spanning 1990-2021 for Kenya, Uganda, and Tanzania 

health systems, with 32 annual observations for each country. ARIMA and LSTM 

models were developed and validated using identical specifications, with 

performance evaluated using RMSE, MAE, and Diebold-Mariano statistical tests 

for significance. ARIMA significantly outperformed LSTM in Kenya (RMSE: 

5.67 vs 6.66, p<0.001), reflecting stable health system patterns suitable for 

systematic planning, while LSTM demonstrated superior performance in Uganda 

(RMSE: 8.47 vs 15.03) and Tanzania (RMSE: 7.30 vs 10.10), indicating more 

complex health dynamics requiring sophisticated modelling approaches. Kenya's 

predictable GAP patterns enable reliable ARIMA-based forecasting for health 

system planning, while regional variations necessitate context-specific 

methodological approaches across East African health systems. This study 

provides the first systematic GAP forecasting framework for East Africa, offering 

health policy makers evidence-based tools for resource allocation while 

establishing methodological foundations for public health planning that can 

strengthen health systems across the region. 
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INTRODUCTION 

Kenya's health system, like those throughout East 

Africa, has achieved remarkable progress in 

extending life expectancy over the past three 

decades. Life expectancy in Kenya increased from 

55.5 years in 1990 to 64.7 years in 2024, reflecting 

substantial investments in healthcare infrastructure, 

disease control programs, and public health 

interventions (Alwago, 2023; Njenga & 

Kipchirchir, 2024). However, this epidemiological 

success story reveals a concerning pattern: while 

Kenyans are living longer, a significant portion of 

these additional years is spent in poor health, 

creating what researchers term the "GAP" - the 

difference between overall life expectancy and 

healthy life expectancy (HALE)(Cao et al., 2020). 

This GAP represents a critical policy challenge that 

demands evidence-based forecasting to inform 

health system planning and resource allocation 

across the region. 

The GAP represents years lived with disability, 

chronic illness, or significant health limitations that 

affect quality of life and productivity (Martinez et 

al., 2021; Robine et al., 1999; Tokudome et al., 

2016). In Kenya, this indicator has averaged 6.76 

years over the past three decades, peaking at 9.32 

years in 2004 before declining to more manageable 

levels through targeted health interventions 

(Naghavi et al., 2024; Njenga & Kipchirchir, 2024; 

World Health Organization (WHO), 2023). 

Understanding and predicting GAP trends is crucial 

for Kenya's health system planning, as these years 

of poor health drive demand for chronic disease 

management, rehabilitation services, and long-term 

care, which require substantial resource allocation 

and strategic planning (Moses et al., 2021; Nyawira 

et al., 2023). 

Despite the policy importance of GAP trends, 

limited research has focused on forecasting this 

critical health indicator, particularly in African 

contexts. Traditional statistical methods like 

Autoregressive Integrated Moving Average 

(ARIMA) models have proven effective for 

demographic forecasting in stable contexts, while 

newer machine learning approaches such as Long 

Short-Term Memory (LSTM) networks show 

promise for capturing complex, non-linear health 

patterns (Cerqueira et al., 2020; Elsaraiti & 

Merabet, 2021; Kontopoulou et al., 2023; Siami-

Namini et al., 2018). The debate between ARIMA 

and LSTM as effective time series forecasting 

methods has been explored extensively in various 

domains, including healthcare. ARIMA, a 

traditional statistical approach, is valued for its 

simplicity, interpretability, and robust performance 

in structured, linear time series data. However, it 

struggles to capture nonlinear and complex 

dependencies, which are increasingly relevant in 

healthcare predictions (Li, 2024; Sirisha et al., 

2022). Conversely, LSTM, a deep learning model, 

excels in modelling nonlinear relationships and 
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long-term dependencies, demonstrating superior 

predictive accuracy in complex scenarios such as 

mortality forecasting, disease burden analysis, and 

life expectancy estimation (Esteban et al., 2016; 

Garrido et al., 2024; Sherstinsky, 2020; Tsantekidis 

et al., 2022; T. Wang et al., 2020). However, no 

systematic comparison has evaluated which 

approach best captures GAP dynamics in Kenya or 

similar East African health systems. 

The primary objective is to determine whether 

traditional ARIMA or advanced LSTM methods 

more accurately forecast Kenya's GAP trends, 

thereby informing health system resource allocation 

and strategic planning. Secondary objectives 

include contextualising Kenya's patterns within East 

African regional trends and developing policy 

recommendations for health system strengthening 

based on forecasting results. These findings will 

directly support Kenya's health sector strategic 

planning while providing a methodological 

framework for GAP forecasting across East Africa. 

Kenya Health System Context 

Kenya's health system provides an ideal context for 

GAP forecasting methodology development due to 

several unique characteristics that distinguish it 

within the East African region. Firstly, Kenya's 

relative political stability since the 2010 

constitutional reforms has enabled sustained health 

policy implementation, creating more predictable 

health trend patterns compared to countries 

experiencing frequent policy disruptions (Hyden & 

Onyango, 2021). This stability is reflected in 

consistent health sector budget allocations and 

sustained implementation of major health programs 

such as the Health Sector Strategic Plan and 

Universal Health Coverage initiatives (Neumark & 

Prince, 2021). 

Secondly, Kenya possesses East Africa's most 

comprehensive health information system, with 

robust vital registration and disease surveillance 

capabilities that generate high-quality longitudinal 

health data (Odeny et al., 2023). The Kenya Health 

Information System (KHIS) and collaboration with 

international health monitoring initiatives provide 

reliable data streams essential for accurate 

forecasting model development (Nyangena et al., 

2021). 

Thirdly, Kenya has successfully navigated the 

epidemiological transition from a predominantly 

infectious disease burden to increased non-

communicable disease prevalence, making it a 

regional leader in managing the health challenges 

that drive GAP increases (Mtintsilana et al., 2023; 

Neumark & Prince, 2021). This transition 

experience provides valuable insights for 

forecasting future health needs and resource 

requirements across East Africa. 

METHODS 

Study Design and Rationale 

This study employs a comparative time series 

forecasting approach to evaluate optimal methods 

for predicting Kenya's GAP trends, with cross-

validation using Uganda and Tanzania data to 

contextualise findings within the East African 

health landscape. The primary focus on Kenya 

leverages the country's robust health data systems 

and relative political stability, which provide ideal 

conditions for developing reliable forecasting 

methodologies that can inform evidence-based 

health policy across the region. 

Data Sources and Quality Assessment 

The study utilises comprehensive health data from 

two authoritative sources: the Global Burden of 

Disease Study 2021 (GBD 2021) and WHO 

estimates of HALE. For Kenya, the primary focus 

country, we extracted annual data spanning 1990-

2021 (32 observations), including life expectancy at 

birth (LE), healthy life expectancy (HALE), and 

derived GAP calculations. To contextualise Kenya's 

forecasting results within the broader East African 

health landscape, we included comparable time 

series data from Uganda and Tanzania (1990-2021). 

This comparative approach enables assessment of 
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whether forecasting model performance varies 

across different East African health system 

contexts, thereby informing regional health 

planning strategies.  

The GAP serves as the primary outcome variable 

and was calculated as: 

𝐺𝐴𝑃

= 𝐿𝑖𝑓𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 𝑎𝑡 𝐵𝑖𝑟𝑡ℎ (𝐿𝐸0)

− 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐿𝑖𝑓𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 (𝐻𝐴𝐿𝐸) 

This indicator represents the average number of 

years individuals in a population can expect to live 

with significant health limitations, disability, or 

chronic disease burden (Cao et al., 2020; Labbe, 

2010; Permanyer & Bramajo, 2023; Tokudome et 

al., 2016). 

Methodological Framework 

The analysis employs a two-phase comparative 

modeling approach, with primary focus on 

developing optimal forecasting methods for Kenya's 

health planning needs. Phase 1 will be the Kenya-

focused model development, which involves 

determining optimal forecasting methodology for 

Kenya's GAP trends to support national health 

system planning and resource allocation. Phase 2 

involves validating methodological findings using 

Uganda and Tanzania data to assess generalizability 

and inform regional health planning approaches. 

Traditional Statistical Method: ARIMA 

The ARIMA model is a parametric statistical 

approach widely used in time series analysis and 

forecasting, particularly suited for contexts with 

stable underlying trends (Li, 2024; Majidnia et al., 

2023). ARIMA modelling follows the Box-Jenkins 

methodology: (1) stationarity assessment using the 

ADF test, (2) parameter selection via AIC/BIC 

criteria, and (3) residual diagnostics using the 

Ljung-Box Q statistic. The Ljung-Box Q statistic is 

as follows: 

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

 

Where 𝑛 is the sample size, 𝑚 is the number of lags, 

and 𝜌𝑘 is the autocorrelation at lag 𝑘 (Kim et al., 

2004). The optimal ARIMA(p,d,q) model captures 

autoregressive, differencing, and moving average 

components. 

Advanced Machine Learning Method: LSTM 

Forecasting with non-parametric models, 

particularly neural networks, has revolutionised 

time series analysis by addressing the limitations of 

traditional parametric models like ARIMA. Neural 

networks excel at modelling complex, nonlinear 

relationships in data. Among these, RNNs and their 

advanced variant, LSTM networks, are particularly 

effective for sequential data such as time series. 

These models can capture dependencies across 

time, including short-term and long-term patterns 

(T. Wang et al., 2020; Zhang et al., 2022). 

LSTM networks utilise gating mechanisms (forget, 

input, output gates) to capture long-term 

dependencies in sequential data. The gating 

mechanisms enable LSTMs to retain information 

over extended sequences, making them ideal for 

datasets with long-term patterns (Garrido et al., 

2024; Tsantekidis et al., 2022).  The model was 

implemented with two LSTM layers (50 units each), 

dropout regularization (20%), and Adam optimizer 

with Mean Squared Error (MSE) loss function.  

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

Performance Metrics 

After training the ARIMA and LSTM models, the 

forecasting process involved using the finalised 

models to predict future GAP values. Root Mean 

Squared Error (RMSE) and Mean Absolute Error 

(MAE) metrics were then used to evaluate the 

performance of these forecasts. To statistically 

compare the accuracy of ARIMA and LSTM 
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forecasts, the Diebold-Mariano (DM) test was 

conducted. The DM test evaluates whether the 

forecasting errors from two models are significantly 

different, using the null hypothesis that the models 

have equal forecast accuracy (Zhou et al., 2021). 

The test statistic is calculated as: 

𝐷𝑀 =  
𝑑̅

√2𝜋𝑓𝑑̂(0)
𝑇

 

Where 𝑑̅ is the mean of the loss differential 𝑑𝑡 =

𝑔(𝑒1𝑡) − 𝑔(𝑒2𝑡), 𝑓𝑑̂(0) is the spectral density of 

𝑑𝑡  at frequency zero, and 𝑇 is the sample size. Here, 

𝑔(⋅) is a loss function, such as squared error, and 𝑒1𝑡

, 𝑒2𝑡 are the forecast errors from ARIMA and 

LSTM, respectively. For each country, both 

ARIMA and LSTM models were implemented 

using identical methodological specifications, 

enabling direct performance comparison and 

regional pattern identification. 

Data Ethics and Limitations 

All data utilised in this study derive from publicly 

available, aggregate-level health statistics from 

internationally recognised sources (Institute for 

Health Metrics and Evaluation (IHME), 2021; 

World Health Organization (WHO), 2023). No 

individual-level data or personally identifiable 

information was accessed or analysed. The 32-year 

observation period, while spanning meaningful 

health development phases, represents a modest 

sample size for machine learning applications, 

particularly LSTM networks, which typically 

benefit from larger datasets (Mienye et al., 2024). 

The analysis is limited to the 1990-2021 period 

based on data availability, potentially missing 

longer-term cyclical patterns in health trends. In 

addition, while Kenya provides an excellent case 

study for East African health forecasting, 

generalizability to other African regions or global 

contexts requires additional validation. 

RESULTS 

Kenya Gap Trends and Health Dynamics 

Kenya's GAP averaged 6.76 years (1990-2021), 

peaking at 9.32 years (2004) and declining to 

current levels around 6.2 years. This decline 

coincided with major health sector reforms and 

sustained policy implementation between 2005-

2015. 

Figure 1: Comparison of GAP, Life Expectancy, and HALE Over Time in Kenya 
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The rolling correlation analysis provides insights 

into how the relationships between GAP and the 

other variables have evolved from 1990 to 2021. A 

rolling window of 5 years was chosen to smooth 

short-term fluctuations and highlight long-term 

trends. This approach helps account for policy 

changes, economic shifts, and healthcare 

advancements that may not be evident in year-to-

year data. Figure 2 reveals some variables, such as 

metabolic risks, YLDs, and environmental/ 

occupational risks deaths, generally maintain strong 

positive correlations with GAP, suggesting a 

persistent link. Behavioural risks YLD and SEV 

show periods of strong positive and negative 

correlations, indicating evolving influences on GAP 

over time. 

Figure 2: Rolling Correlation of GAP with Health Variables (5-Year Window) 

 

The transitions around 2005 and 2015 suggest 

significant structural or policy-driven shifts. 

However, the most notable change was around the 

mid-2000s when many variables experienced 

sudden correlation reversals, possibly due to major 

economic or health-related shifts. 

Model Development and Performance 

ARIMA Model Implementation 

The ADF test confirmed stationarity (ADF = -

3.4752, p = 0.009), eliminating the need for 

differencing (d = 0). ACF and PACF analysis 

indicated an AR(1) process (sharp PACF cutoff at 

lag 1) and an MA(3) process (gradual ACF decline 

to lag 3), suggesting ARIMA(1,0,3). 

Figure 3: The ACF and PACF Plots 
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Model selection using AIC and BIC criteria 

identified ARIMA(1,0,3) as optimal (AIC = -0.558, 

BIC = 8.236). Ljung-Box testing confirmed 

adequate model fit with no significant residual 

autocorrelation (Q = 0.17, p = 0.995).  

The fitted model equation is: 

𝐺𝐴𝑃𝐾𝑒𝑛𝑦𝑎,𝑡 =  5.6851 + 0.9451𝑦𝑡−1 +  𝜖𝑡

+ 0.8338𝜖𝑡−1 + 1.126𝜖𝑡−2

+  0.4706𝜖𝑡−3 

The significant autoregressive coefficient (φ₁ = 

0.945) indicates strong GAP persistence, while the 

constant term (μ = 5.685) centres predictions around 

5.7 years. Moving average terms demonstrate 

extended shock effects: MA(1) and MA(2) show 

substantial impact from recent disturbances, while 

MA(3) indicates weaker but persistent effects from 

policy shifts or health system changes. 

LSTM Model Implementation 

The dataset was split into training (25 points) and 

testing (7 points) sets. Data preprocessing included 

MinMaxScaler normalization (0-1 range) and 

sequence structuring for temporal dependencies. 

The LSTM architecture comprised two LSTM 

layers (50 units each) with 20% dropout 

regularization to prevent overfitting, followed by a 

dense output layer. The model was trained for 100 

epochs using the Adam optimizer with an MSE loss 

function and a batch size of 8. 

 

Figure 4: Loss Function Results for the LSTM Model 

 

The loss function demonstrates successful model 

convergence, with gradual decline across epochs 

and stabilisation at 0.0139, indicating effective 

learning of GAP patterns. 

ARIMA and LSTM Predictions Comparisons 

The ARIMA model demonstrated superior 

forecasting performance compared to LSTM, 

achieving lower error rates across all evaluation 

metrics with RMSE of 5.67 versus 6.66 for LSTM 

and MAE of 5.67 versus 6.65 for LSTM, 

representing a 14.8% improvement in prediction 

accuracy. 

Statistical significance of the performance 

differences was assessed using the Diebold-

Mariano test. The DM statistic of -45.30 (p-value = 

9.90e-08) provided strong evidence rejecting the 

null hypothesis of equal forecast accuracy, 

confirming that ARIMA's superior performance is 

statistically significant (p<0.001) in forecasting 

Kenya's GAP values. 
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Figure 5. Comparison of ARIMA and LSTM Predictions with 95% CI 

 

Both models project increasing GAP trends, but 

with notably different trajectories. LSTM forecasts 

a steep, rapid increase after 2025 with narrow 

confidence intervals, while ARIMA predicts a more 

gradual, stable progression with broader confidence 

intervals that widen over time. This pattern reflects 

ARIMA's tendency toward stationarity-based 

projections and demonstrates greater forecasting 

uncertainty in extended time horizons, which is 

typical for traditional time series models (Sirisha et 

al., 2022; X. Wang et al., 2023). 

Regional Comparative Context 

The two models were further assessed across three 

countries, Kenya, Uganda, and Tanzania, using 

similar performance metrics. The results are as 

shown in Table 1 below. 

 

Table 1: Multi-country Comparison of the Performance Metrics 

Country ARIMA 

RMSE 

LSTM 

RMSE 

DM Test 

Stat 

DM 

P value 

Kenya 5.673 6.659 -45.300 9.90E-08 

Uganda 15.027 8.470 -128.300 5.39E-16 

Tanzania 10.103 7.300 -163.584 6.06E-17 

Regional validation across Uganda and Tanzania 

reveals important methodological insights for East 

African health system development. While Kenya's 

stable patterns favour traditional ARIMA 

approaches, Uganda (LSTM RMSE: 8.47 vs 

ARIMA: 15.03) and Tanzania (LSTM RMSE: 7.30 

vs ARIMA: 10.10) require more sophisticated 

modelling to capture complex health dynamics. 

This differential performance suggests that Kenya's 

health system stability creates opportunities for 

systematic planning approaches that may be 

premature in neighbouring countries still 

experiencing more volatile health development 

patterns. 

DISCUSSION 

This study provides Kenya's health policy makers 

with the first systematic evaluation of GAP 

forecasting methodologies, demonstrating that 

traditional ARIMA modeling significantly 

outperforms advanced machine learning approaches 

for Kenya's health system planning needs. The 
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superior ARIMA performance (RMSE: 5.67 vs 6.66 

for LSTM, p<0.001) reflects Kenya's achievement 

of health system stability that enables systematic, 

evidence-based planning approaches, 

distinguishing the country within the East African 

regional context. 

Kenya's GAP data exhibits smoother trends with 

predictable patterns that align with ARIMA's 

strengths in capturing linear trends and stable 

behaviours, making it well-suited for datasets with 

minimal abrupt changes. Conversely, the superior 

LSTM performance in Uganda and Tanzania 

suggests their GAP data contains complex, non-

linear trends that LSTM's neural network 

architecture effectively captures through its ability 

to model long-term dependencies. The statistically 

significant differences across all three countries 

(DM test p-values <0.001) confirm that ARIMA's 

advantage in Kenya and LSTM's superior 

performance in Uganda and Tanzania represent 

meaningful methodological insights for regional 

health planning. 

Policy Implications for Kenya's Health System 

Development 

Kenya should immediately integrate routine GAP 

forecasting into health sector strategic planning, 

leveraging ARIMA methodology's demonstrated 

reliability for evidence-based resource allocation. 

The projected gradual increase creates opportunities 

for systematic capacity building in chronic disease 

management, requiring approximately 15-20% 

expansion in long-term care infrastructure over the 

next decade. This forecasting success positions 

Kenya for regional health system leadership 

through establishing an East African Health 

Forecasting Initiative, providing technical 

assistance to neighbouring countries while building 

regional capacity for evidence-based health 

planning that strengthens health security across East 

Africa. 

 

 

CONCLUSION 

The projected GAP increases across East Africa 

signal a growing morbidity burden, indicating that 

while populations live longer, substantial portions 

of additional years are spent in poor health. This 

trend suggests increased non-communicable disease 

prevalence, prolonged disability, and inadequate 

preventive healthcare access, potentially translating 

into higher healthcare costs, reduced workforce 

productivity, and broader socio-economic strain in 

resource-constrained settings. 

This study demonstrates that Kenya's stable health 

development trajectory enables reliable GAP 

forecasting through traditional ARIMA 

methodology, providing health policy makers with 

evidence-based tools for systematic health system 

planning. The differential performance patterns 

across East African countries reveal opportunities 

for regional collaboration that leverages Kenya's 

methodological success while addressing diverse 

health system contexts. For Kenya's health sector 

strategic planning, these findings support 

immediate GAP forecasting integration into routine 

planning processes and position Kenya for regional 

leadership in evidence-based health system 

development. 

Study Limitations and Future Directions 

The 32-year time series represents a modest sample 

size that limits forecasting confidence beyond 5-7 

years. Future research should expand to subnational 

analysis within Kenya, incorporate external health 

determinants, and validate methodological 

approaches across additional African contexts. 

While aggregate national data suits strategic 

planning, it doesn't address subnational variations 

relevant for targeted interventions within Kenya's 

devolved health system. Future studies should 

explore combining ARIMA's linear forecasting 

strengths with LSTM's nonlinear capabilities to 

develop hybrid models with enhanced predictive 

accuracy. 
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