Physical and Mechanical Strength Properties of Resin Tapped Pinus caribaea Timber

  • Christine Betty Nagawa Makerere University
  • Isaac Ssebuyira Kitiibwa Makerere University
  • Derrick Mubiru Makerere University
  • Agatha SyofunaU Makerere University
  • Christine Mugumya Kyarimpa Kyambogo University
  • Timothy Omara Makerere University
  • Edward Nector Mwavu Makerere University
  • Simon Savio Kizito Makerere University
Keywords: Basic density, Mechanical properties, Modulus of elasticity, Resin tapping, Shear stress
Share Article:

Abstract

Resin tapping on Pinus caribaea Morelet (P. caribaea) is an activity that is proven to yield multiple economic benefits to pine growers. However, there is uncertainty as to whether extracting gum resin from P. caribaea trees compromises its timber strength properties for structural applications. In this study, the effects of resin tapping on the basic density and strength properties of timber from P. caribaea of different ages (one, three, and five years) were investigated. Tests were done on small, clear specimens from P. caribaea trees whose resins were tapped, with control samples obtained from an untapped tree. The samples were prepared using the British standard (BS 373:1957) and tested for their basic density, modulus of elasticity, modulus of rupture, shear strength parallel to grain and compressive strength parallel to grain test following the American Standards Testing Methods. The results showed that basic densities and strength properties of P. caribaea timber tended to increase with an increase in the age of the resin tapped trees, which were significantly different from the samples of the untapped tree (P<0.05). These results suggest that resin tapping of P. caribaea using the Chinese method does not have negative effects on the strength properties of its timber. However, further studies are required to understand the effects of resin tapping on timber properties, especially for P. caribaea trees that are tapped for more than five years.

Downloads

Download data is not yet available.

References

British Standard BS 373:1957. Methods of Testing Small Clear Specimens of Timber. British Standards Institution, London.

BSI. (2002). British Standard BS 5268-2-2002. Structural Use of Timber Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship. British Standards Institution, London.

Chen, F., Yuan, Y., Yu, S., & Zhang, T. (2015). Influence of climate warming and resin collection on the growth of Masson pine (Pinus massoniana) in a subtropical forest, southern China. Trees, 29, 1423–1430.

Demko, J., & Machava, J. (2022). Tree Resin, a Macroergic Source of Energy, a Possible Tool to Lower the Rise in Atmospheric CO2 Levels. Sustainability, 14, 3506.

Dziedziński, M., Kobus-Cisowska, J., & Stachowiak, B. (2021). Pinus Species as Prospective Reserves of Bioactive Compounds with Potential Use in Functional Food—Current State of Knowledge. Plants, 10, 1306.

García-Iruela, A., Esteban, J. G., de Palacios, P., García-Fernández, F., de Miguel Torres, A., Vázquez Iriarte, E., & Simón, C. (2016). Resinous wood of Pinus pinaster Ait.: Physico-mechanical properties. BioResources, 11, 5230-5241.

García-Méijome, A., Rozados Lorenzo, M. J., Fernández Blanco, E., Martínez Chamorro, E., & Gómez-García, E. (2023). Resin-Tapping Production in Pinus pinaster Ait. Stands in Galicia (NW Spain): Effects of Location, Number of Faces, Wound Width and Production Year. Forests, 14, 128.

Jakubowski, M., & Dobroczyński, M. (2023). Long-Term Climate Sensitivity of Resin-Tapped and Non-Resin-Tapped Scots Pine Trees Based on Tree Ring Width and Blue Intensity. Forests, 14, 593.

Kopaczyk, J., Jelonek, T., & Szwed, T. (2023). The impact of resin harvest history on properties of Scots pine wood tissue. BioResources, 18, 6221-6235.

Lima, I. L. d., Ranzini, M., Fioruci, W. J., Bucci, L. A., Longui, E. L., Zanata, M., & Garcia, J. N. (2023). Physical and mechanical wood properties of two varieties of Pinus caribaea. Research, Society and Development, 12, e7712943146.

Liu, Y., Wang, Z., Zhao, F., Zeng, M., Li, F., Chen, L., . . . Guo, W. (2022). Efficient resin production using stimulant pastes in Pinus elliottii × P. caribaea families. Scientific Reports, 12, 13129.

López-Álvarez, Ó., Franco-Vázquez, L., b, A. R.-G., Borges, J. G., & Marey-Perez, M. (2025). Evaluation of the impact of resin tapping on the spectral index response of Pinus pinaster stands in the NW of the Iberian Peninsulá. Forest Ecology and Management, 594, 122983.

López-Álvarez, Ó., Zas, R., & Marey-Perez, M. (2023). Resin tapping: A review of the main factors modulating pine resin yield. Industrial Crops and Products, 202, 117105.

Moura, M., Campelo, F., Nabais, C., & Garcia-Forner, N. (2023). Resin tapping influence on maritime pine growth depends on tree age and stand characteristics. European Journal of Forest Research, 142, 965–980.

Naylor, A., Hackney, P., & Noel, P. (2012). Determination Of wood Strength Properties Through Standard Test Procedures. Proceedings Of the 10th International Conference on Manufacturing Research ICMR 2012: International Conference on Manufacturing Research 2012 - Aston University, Birmingham, UK.

Rodrigues-Corrêa, K. C. D. S., Sausen, T. L., Rocha, F. S., & Fett-Neto, A. G. (2011). Oleoresin yield and carbon stocks in tapped subtropical Pinus elliottii forests. BMC Proceedings, 5, P100.

Rodrigues-Honda, K. C. D. S., Junkes, C. F. O., Lima, J. C., Waldow, V. A., Rocha, F. S., Sausen, T. L., . . . Fett-Neto, A. G. (2023). Carbon Sequestration in Resin-Tapped Slash Pine (Pinus elliottii Engelm.) Subtropical Plantations. Biology, 12, 324.

Rojas-Sandoval, J., & Acevedo-Rodríguez, P. (2013). Pinus caribaea (Caribbean pine). CABI Compendium. Available at https://doi.org/10.1079/cabicompendium.41573.

Silva, M., Loureiro, C., Gaspar, M., Pires, J., Ribeiro, M., Loureiro, C., . . . Lousada, J. (2018). RESIMPROVE - Desenvolvimento de processos de produção e extração de resina de pinheiro para a melhoria da eficiência, racionalização e expansão da atividade. ISBN 978-989-704-264-5.

Singh, S. P., Inderjit, Singh, J. S., Majumdar, S., Moyano, J., Nuñez, M. A., & Richardson, D. M. (2018). Insights on the persistence of pines (Pinus species) in the Late Cretaceous and their increasing dominance in the Anthropocene. Ecology and evolution, 8, 10345–10359.

Ssebuliba, S. (2022). Assessing tree mortality intensity at two different periods of resin tapping in Uganda. BSc Dissertation, Makerere University, Kampala, Uganda.

Sullivan, T. P., Sullivan, D. S., Lindgren, P. M. F., Ransome, D. B., & Sullivan, J. H.-R. (2025). Thirty-year responses of ecosystem components to stand thinning in lodgepole pine forest: Old-forest attributes, stand structure, and forest-floor small mammals. Forest Ecology and Management, 587, 122733.

van der Maaten, E., Mehl, A., Wilmking, M., & van der Maaten-Theunissen, M. (2017). Tapping the tree-ring archive for studying effects of resin extraction on the growth and climate sensitivity of Scots pine. Forest Ecosystems, 4, 7.

Vieilledent, G., Fischer, F. J., Chave, J., Guibal, D., Langbour, P., & Gérard, J. N. (2018). New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American journal of botany, 105, 1653–1661.

Williams, R., Nauman, C., & Zhu, J. (2021). The Effects of Resin Tapping on the Radial Growth of Masson Pine Trees in South China-A Case Study. Agricultural Research & Technology, 8, 8–11.

Wu, H.-r., Fan, Y.-r., Niu, X.-y., Luan, Q.-f., Li, Y.-j., Jiang, J.-m., & Jin, J.-e. (2022). Effects of Resin-Tapping Year on Wood Properties of Living Pinus elliottii. Forest Research, 35, 31-39.

Zaluma, A., Strike, Z., Rieksts-Riekstiņš, R., Gaitnieks, T., & Vasaitis, R. (2022). Long-term pathological consequences of resin tapping wounds on stems of Scots pine (Pinus sylvestris L.). Trees, 36, 1507–1514.

Zas, R., Quiroga, R., Touza, R., Vázquez-González, C., Sampedro, L., & Lema, M. ( 2020). Resin tapping potential of Atlantic maritime pine forests depends on tree age and timing of tapping. Industrial Crops and Products, 157, 112940.

Zeng, X., Sun, S., Wang, Y., Chang, Y., Tao, X., Hou, M., . . . Zhang, L. (2021). Does resin tapping affect the tree-ring growth and climate sensitivity of the Chinese pine (Pinus tabuliformis) in the Loess Plateau, China? Dendrochronologia, 65, 125800.

Zziwa, A., Mukasa, J., & Kizito, S. (2020). Structural suitability of 10-year old Pinus caribaea timber with a forest fire history in farm buildings. Agricultural Engineering International, 22, 49–58.

Zziwa, A., Ziraba, Y., & Mwakali, J. (2010). Strength properties of selected Uganda timbers. International Wood Products Journal, 1, 21–27.

Published
19 August, 2025
How to Cite
Nagawa, C., Kitiibwa, I., Mubiru, D., SyofunaU, A., Kyarimpa, C., Omara, T., Mwavu, E., & Kizito, S. (2025). Physical and Mechanical Strength Properties of Resin Tapped Pinus caribaea Timber. East African Journal of Forestry and Agroforestry, 8(1), 406-414. https://doi.org/10.37284/eajfa.8.1.3511