Relevance of Remote Sensing and its Applications in Forestry. A Critical Review

  • Sintayehu Getie Ethiopian Forestry Development Bahir Dar Center
  • Asabeneh Alemayehu Ethiopian Forestry Development Bahir Dar Centre
  • Antensay Mekoya Ethiopian Forestry Development Bahir Dar Centre
Keywords: Change Detection, Disturbance, Forest Management, Remote Sensing
Share Article:


For several nations who are developing, forests play a crucial role in rural life. Due to the incredible challenges associated with staff, logistics, and chronological consistency of field-based surveys for forest management, a variety of sources of data obtained by airborne, space-borne, and terrestrial remote sensing sensors are now essential sources of knowledge for studies on the spatiotemporal patterns of forests. Most recently, understanding of forests and their conservation has been derived primarily from satellite imagery. The process of organizing and carrying out procedures for the management and use of forests can be done with the assistance of remote sensing in order to achieve economic, social, cultural, and environmental goals. Satellite remote sensing has been providing ever-more-advanced knowledge about woodland structure, management, monitoring, and oversight whenever the first civilian earth-observing program was launched. This article reviewed the application of remote sensing on forestry. Data were gathered from published research papers, books, internet resources, and expert observation. Remote sensing’s synoptic view, availability in a rage of spatial-temporal scales, high degree of homogeneity, inexpensiveness as well as the increasing trend in availability make it special in forest science. As observed from the review, remote sensing technology is critical in forest management. It helps to provide up to date information on forest cover change, forest fire, forest disturbance, forest wildlife management, forest biomass and others. Remote sensing is vital in providing scientific information in forest resources monitoring and management


Download data is not yet available.


Adam, EMI., Mutanga, O. (2012). Estimation of high-density wetland biomass: Combining regression model with vegetation index developed from Worldview-2 imagery, 8531.

Adamsen, F.J., Pinter, P.J., Barnes, E.M., LaMorte, R.L., Wall, G.W., Leavitt, S.W., Kimball, B.A. (1999). Measuring wheat senescence with a digital camera. Crop Sci, 39, 719–724.

Anderson, J.E., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.L., Dubayah, R.O.,Hofton, M.A., Blair, J.B., (2008). Integrating waveform LiDAR with hyperspectralimagery for inventory of a northern temperate forest. Remote Sens. Environ.112, 1856– 1870. (

Asner, GP., Clark, JK., Mascaro, J., Garcia, GA., Chadwick, KD., Encinales, DA., Paez-Acosta, G, Cabrera Montenegro E, Kennedy-Bowdoin T, Duque, A, Balaji, A, von Hildebrand, P., Maatoug, L, Bernal, JF., Knapp, DE., García Dávilla, MC., Jacobson, J., Ordóñez, MF. (2012). High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosci Discuss; 9:2445–79.

Ballanti, L., Blesius, L., Hines, E., Kruse, B. (2016). Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 8, 445.

Baloloy, A.B., Blanco, A.C., Candido, C.G., Argamosa, R.J.L., Dumalag, J.B.L.C., Dimapilis, L.L.C., Paringit, E.C. (2018). Estimation of Mangrove Forest Aboveground Biomass Using Multispectral Bands, Vegetation Indices and Biophysical Variables Derived from Optical Satellite Imageries: Rapideye, Planetscope and Sentinel-2. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., IV-3, 29–36.

Barbierato, E., Bernetti, I., Capecchi, I., Saragosa, C. (2020). Integrating Remote Sensing and Street View Images toQuantify Urban Forest Ecosystem Services. Remote Sens, 12, 329.

Barmpoutis, P., Papaioannou, P., Kosmas Dimitropoulos, k., Grammalidis, N. (2020). A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors, pp 26.

Basuki, T. Skidmore, K., Hussin, A., Duren, I. (2013). Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data. International Journal of Remote Sensing 34: 4871-4888

Castillo, M., Rivard B., Sánchez-Azofeifa, A., Calvo-Alvardao, J., Dubayah, R. (2012). LiDAR remote sensing for secondary Tropical Dry Forest identifcation. Remote Sens Environ; 121:132–43

Chen, G., K. Meentemeyer, K. (2017). Remote Sensing of Forest Damage by Diseases and Insects. Remote Sensing for Sustainability, Pp: 19.

Cheng, K., Wang Juanle, W., Xinrong, Y. (2021). Mapping Forest Types in China with 10 m Resolution Based on Spectral–Spatial–Temporal Features., 13(5), 973;

Cheng, K.; Wang, J. (2019). Forest-Type Classification Using Time-Weighted Dynamic Time Warping Analysis in Mountain Areas: A Case Study in Southern China. Forest, 10, 1040.

Cochran, F.; Daniel, J.; Jackson, L.; Neale, A. (2020). Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals. Remote Sens. Environ, 244,111796

Colwell, R.N. (1964). Aerial photography - A valuable sensor for the scientist. American Scientist, Vol. 52, No. 1 (MARCH 1964), pp. 16-49.

Coops, N., Stanford, M., Old, K., Dudzinski, M., Culvenor, D., Stone, C. (2003). Assessment of dothistroma needle blight of Pinus radiata using airborne hyperspectral imagery. Phytopathology 93:1524–1532.

Coops, NC., Goodwin, N., Stone, C. (2004). Predicting Sphaeropsis sapinea damage on Pinus radiata stands from CASI-2 using spectral mixture analysis. In: Anchorage, AK, USA: IEEE International Geoscience and Remote Sensing Symposium, pp. 1007–1012.

Coops, NC., Goodwin, N., Stone, C., Sims, N. (2006). Application of narrow-band digital camera imagery to plantation canopy condition assessment. Can J Remote Sens, 32:19–32.

Coops, NC., Stone, C. (2005). A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage. Aust J Bot, 53:417–429.

Cotrozzi, L. (2022). Spectroscopic detection of forest diseases: a review (1970–2020). J. For. Res. 33, 21– 38.

Dalmiya, CP., Santhi, N., Sathyabama, B. (2019). A novel feature descriptions for automatic change detection in remote sensing images. Egypt J Remote Sens Space Sci 22(2):183–192

Das, S.; Singh, T.P. (2012). Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. Int. J. Eng. Res. Technol, 1, 1–13.

Deng, X, Li Z., Huang, J., Shi, Q, Li, Y. (2013). A revisit to the impacts of land use changes on the human wellbeing via altering the ecosystem provisioning services. Adv Meteorol.

Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. (2003). Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manag, 183, 31–46.

Dube, T.; Mutanga, O. (2015). Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource-constrained areas. ISPRS J. Photogramm. Remote Sens, 108, 12–32.

Duncanson, L.; Rourke, O.; Dubayah, R. (2015). Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests. Sci. Rep, 5, 1–13.

Englhart, S., Jubanski, J., Siegert, F. (2013). Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens; 5:2368–88.

FAO. (2004). FAOSTAT Database Results 2004. Food and Agriculture Organization of the United Nations Rome, Italy.

FAO. (2015). Global Forest Resources Assessment 2015. FAO Forestry Paper No. 1. UN Food and Agriculture Organization, Rome.

Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh (2016). A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87.

Fokeng, RM., Forje, WG., Meli, VM., Bodezemo, BN. (2019). Multi-temporal forest cover change detection in the Metchie-Ngoum Protection Forest Reserve. EJRS, West Region of Cameroon (in press).

Franklin, S.E. (2010). Remote Sensing for Biodiversity and Wildlife Management: Synthesis and Applications. McGraw-Hill Companies, Inc., USA.

Gao, B.C. (1996). A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ, 58, 257–266.

Geng, X., Wang, X., Yan, H., Zhang, Q., Jin, G. (2015). Land use/land cover change induced impacts on water supply service in the upper reach of Heihe River Basin. Sustainability 7:366–383

Gibson, L., Munch, Z., Palmer, A., Mantel, S. (2018). Future land cover change scenarios in South African grassland-implications of altered biophysical drivers on land management. Helyiyon 4:e00693

Gitelson, A.; Merzlyak, M.N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol, 22, 247–252.

Gizachew, B., Solberg, S., Naesset, E., Gobakken, T., Bollandsas, O.M., Breidenbach, J., Zahabu, E., Mauya, E.W. (2016). Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance Manag, 11, 1–14.

Goodwin, N., Coops, NC., Stone, C. (2005). Assessing plantation canopy from airborne imagery using spectral mixture analysis and fractional abundances. Int J Appl Earth Obs, 7:11–28.

Grabska, Ewa, Patrick Hostert, Dirk Pflugmacher, and Katarzyna Ostapowicz. 2019. "Forest Stand Species Mapping Using the Sentinel-2 Time Series" Remote Sensing 11, no. 10: 1197.

Grinde, A.R.; Slesak, R.A.; D’Amato, A.W.; Palik, B.P. (2020). Effects of tree retention and woody biomass removalon bird and small mammal communities. For. Ecol. Manag, 465, 118090.

Günlü, A.; Ercanli, I.; Ba¸skent, E.Z.; Çakır, G. (2014). Estimating aboveground biomass using Landsat TM imagery: A case study of Anatolian Crimean pine forests in Turkey. Ann. For. Res, 57, 289–298.

Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. (2006). Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag, 225, 378–390

Hatala, JA., Crabtree, RL., Halligan, KQ., Moorcroft, PR. (2010). Landscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem. Remote Sens Environ 114:375–384.

Hościło, A. and Lewandowska, A. (2019). Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 11(8), 929;

Huete, A.; Justice, C.; Van Leeuwen, W. (1999). MODIS Vegetation Index (MOD13). Algorithm Theoretical Basis Document. p. 129. Available online:

Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sens. Environ, 25, 295–309.

Hyypp¨a, J., Hyypp¨a, H., Leckie, D., Gougeon, F., Yu, X., and Maltamo, M. (2008). “Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests.” International Journal of Remote Sensing, Vol. 29: pp. 1339–1366.

Imran, A.B.; Khan, K.; Ali, N.; Ahmad, N.; Ali, A.; Shah, K. (2020). Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Glob. J. Environ. Sci. Manag, 6, 97–108.

Iordache, M-D., Mantas, V., Baltazar, E., Pauly, K., Lewyckyi, N. (2020.) A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote Sens, 12:2280.

Isuhuaylas, L.A.V.; Hirata, Y.; Santos, L.C.V.; Torobeo, N.S. (2018). Natural Forest Mapping in the Andes (Peru): A Comparison of the Performance of Machine-Learning Algorithms. Remote Sens, 10, 782.

Jensen, J.R. (2007). Remote Sensing of the Environment: An Earth Resource Perspective, 2nd] ed. Prentice Hall, Upper Saddle River, NJ, USA.

Ji, L.,Wylie, B.K.; Nossov, D.R.; Peterson, B.; Waldrop, M.P.; McFarland, J.W.; Rover, J.; Hollingsworth, T.N. (2012). Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int. J. Appl. Earth Observ. Geoinf, 18, 451–461.

Joanne, C., Nicholas, C., Michael, A., Vastaranta, M., Hilker, T., Tompalski, P. (2016). Remote Sensing Technologies for Enhancing Forest Inventories: A Review, Canadian Journal of Remote Sensing, 42:5, 619-641

Jordan, C.F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 5, 663–666.

Ju, Y., Pan, J., Wang, X., Zhang, H. (2014). Detection of Bursaphelenchus xylophilus infection in Pinusassoniana from hyperspectral data. Nematology, 16:1197–1207.

Kajisa, T., Murakami, T. N. Mizoue, N. Top & S. Yoshida, S. (2009). Object-based forest biomass esti-mation using Landsat ETM+ in Kampong Thom Province, Cambodia. Journal of Forest Research 14: 203-211.

Kaufman, Y.J.; Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens, 30, 261–270.

Kerr J.T., Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, Vol. 18, No. 6, pp. 299-305.

Kim, S-R., Lee, W-K., Lim, C-H., Kim, M., Kafatos, MC., Lee, S-H., Lee, S-S. (2018). Hyperspectral analysis of pine wilt disease to determine an optimal detection index. Forests, 9:115

Kohl, M., Magnussen, S., Marchetti, M. (2006). Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer-Verlag Berlin Heidelberg, Germany.

Kondratyev, K.Y., 1998. Multidimensional Global Change. Wiely, Chichester

Kresek, R. (2007). History of the Osborne Firefinder. 2007. Available online:

Kumar, D., Borah S., Shankar, U. (2010). Monitoring forest cover change using remote sensing in Amchang Wildlife Sanctuary, Assam, India. Communicated Data.

Labrecque, S., Fournier, R.A., Luther, J.E., Piercey, D. (2006). A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag, 226, 129–144

Lark, TJ., Mueller, RM., Johnson, DM. Gibbs, HK. (2017). Measuring land-use and land-cover change using the U.S. department of agriculture’s cropland data layer: cautions and recommendations. Int J Appl Earth Obs Geoinf 62:224–23

Lechner, M., Foody, M., S. Boyd, S. (2020). Applications in Remote Sensing to Forest Ecology and Management, One Earth, Volume 2, Issue 5.

Leckie, DG., Jay, C., Gougeon, FA., Sturrock, RN., Paradine, D. (2004). Detection and assessment of trees with Phellinus weirii (laminated root rot) using high resolution multi-spectral imagery. Int J Remote Sens 25:793–818

Lefsky, M.A., Cohen, W.B., Parker, G.G., and Harding, D.J. (2002). “LiDAR remote sensing for ecosystem studies.” Bioscience, Vol. 52: pp. 19–30.

Lei, C., Zhu, L. (2018). Spatio-temporal variability of land use/land cover change (LULCC) within the Huron River: effects on stream flows. CRM 19:35–47

Li, C.; Li, Y.; Li, M. (2019). Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests, 10, 104

Li, M., Tan, Y., Pan, J., Peng, S. (2008). Modelling forest aboveground biomass by combining spectrum, textures and topographic features. Frontiers of Forestry in China 3: 10-15.

Lim, K., Treitz, P., Wulder, M.A., St-Onge, B., and Flood, M. (2003). “LiDAR remote sensing of forest structure.” Progress in Physical Geography, Vol. 27: pp. 88–106.

Liu, H.Q.; Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens, 33, 457–465. [CrossRef]

Liu, Yu., Xun Chen, Zengfu Wang, Z. Jane Wang, Rabab K. Ward, Xuesong Wang. (2018). Deep learning for pixel-level image fusion: Recent advances and future prospects, Information Fusion, Volume 42, 158-173,

López-Serrano, P.M.; López-Sánchez, C.A.; Álvarez-González, J.G.; García-Gutiérrez, J. (2016). A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation. Can. J. Remote Sens, 42, 690–705.

Louhaichi, M.; Borman, M.M.; Johnson, D.E. (2001). Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int, 16, 65–70.

Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon, International Journal of Remote Sensing, 26:12, 2509-2525, DOI: 10.1080/01431160500142145.

Lu, D. (2007). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2007, 26, 2509–2525.

Luther, J. E., Fournier, R.A., Piercey, D.E., Guindon, L., Hall, J. (2006). Biomass mapping using forest type and structure derived from Landsat TM imagery. International Journal of Applied Earth Observation and Geoinformation 8: 173-187.

MacDicken, K.G., Sola, P., Hall, J.E., Sabogal, C., Tadoum, M., and de Wasseige, C. (2015). “Global progress toward sustainable forest management.” Forest Ecology and Management, Vol. 352: pp. 47–56.

Macedo, F.L., Sousa, A.M.O.; Gonçalves, A.C.; Marques da Silva, J.R.; Mesquita, P.A.; Rodrigues, R.A.F. (2018). Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images. Eur. J. Remote Sens., 51, 932–944.

MEA. (2003). Millennium Ecosystem Assessment: Ecosystem and Human Well-Being: A Framework for Assessment. Island Press, Washington D.C., pp: 245.

MEFCC. (2015). Pilot REDD+ sites visit report. Addis Ababa: Federal Democratic Republic of Ethiopia.

Mideksa, M. (2009). Assessments of forest cover change using remote sensing and gis techniques: case study in adaba-dodola forest priority area, Ethiopia. MSc. Thesis. Addis Ababa University. Pp83

Min, L., Qu, J., Xianjun, H. (2009b). Estimating aboveground biomass for different forest types based on Landsat TM measurements, Geoin-tormatics, 2009. 17th International Conference on Geoinformatics. pp. 1-6. Proceeding of a meeting held on 12-14, Fairfax. Virginia.

Mitchell, Al., Ake, Rosenqvist, A., Mora, B. (2017). Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manage, 12:9

Motohka, T., Nasahara, K.N., Oguma, H., Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens, 2, 2369.

Musei Sylus, Muhoro Justine and Dubow Abdi ( 2021). Remote Sensing Based Quantification of Forest Cover Change in Somalia for the Period 2000 to 2019.

Mutanga, Onisimo & Shoko, Cletah & Adelabu, Sam & Bangira, Tsitsi. (2016). Remote sensing of aboveground forest biomass: A review. Tropical Ecology. 57. 125-132.

Næsset, E.; Ørka, H.O.; Solberg, S.; Bollandsås, O.M.; Hansen, E.H.; Mauya, E.; Zahabu, E.; Malimbwi, R.; Chamuya, N.; Olsson, H.,(2016). Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote Sens. Environ, 175, 282–300.

Nagamani, DR.K., Mariappan, N. (2013). Forest type mapping using remote sensing techniques. Asian academic research journal of multidisciplinary, volume 1: pp:

Nagendra, H. (2001). Using remote sensing to assess biodiversity. International Journal of Remote Sensing, Vol. 22, No. 12, pp. 2377-2400.

Negassa, M.D., Mallie, D.T., Gemeda, D.O., (2020). Forest cover change detection using Geographic Information Systems and remote sensing techniques: a spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environ Syst Res 9, 1.

Othow, OO., Gebre, SL., Gemeda, DO. (2017). Analyzing the rate of land use land cover change and determining the causes of forest cover change in Gog District, Gambella Regional State, Ethiopia. J Remote Sens GIS.

Otukei, J.R.; Emanuel, M. (2015). Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data. S. Afr. J. Geomat, 4, 1–13.

Pasquarella, V.J., Holden, C.E., Woodcock, C.E. (2018). Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207.

Persson, M.; Lindberg, E.; Reese, H. (2018). Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 10, 1794.

Poona, NK., Ismail, R. (2013). Discriminating the occurrence of pitch canker fungus in Pinus radiata trees using QuickBird imagery and artificial neural networks. South For 75:29–40.

Pradhan, B.; Suliman, M.D.H.B.; Awang, M.A.B. (2007). Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prev. Manag. Int. J, 16.

Qi, J., Kerr, Y., Chehbouni, A. (1994). External factor consideration in vegetation index development. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’lsère, France, 17–21; pp. 723–730.

Qisheng, H. (2012). Estimation of coniferous forest above- ground biomass using LiDAR and Spot-5 data, Remote Sensing, Environment and Transportation Engineering (RSETE), 2nd International Conference, pp. 1-4

Qiu, A., Yang, Y.; Wang, D., Xu, S., Wang, X. (2019). Exploring parameter selection for carbon monitoring based on Landsat-8 imagery of the aboveground forest biomass on Mount Tai. Eur. J. Remote Sens, 52, 1–12.

Rajah, P., Odindi, J., Mutanga, O., Kiala, Z. (2019).The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and mapping. Nat. Conserv, 35, 41–61.

Richardson, A.J.; Wiegand, C.L. (1977). Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens, 43, 1541–1552.

Risdiyanto, I., Fakhrul, M. (2017). Examination of Multi-Spectral Radiance of the Landsat 8 Satellite Data for Estimating Biomass Carbon Stock at Wetland Ecosystem. Preprints, 1–14.

Rogan, J.; Chen, D.M. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 61, 301–325.

Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. (1974). Monitoring the Vernal Advancement and Netrogradation (Greenwave Effect) of Natural Vegetation; Texas A&M University: College Station, TX, USA; p. 390

Ru-Mucova, SA., Filho, WL., Azeiteiro, UM., Pereira, MJ. (2018). Assessment of land use and land cover changes from 1979 to 2017 and biodiversity and land management approach in Quirimbas National Park, Northern Mozambique, Africa. Glob Ecol Conserv 16:e00447.

Schroedera, W., Olivaa, P., Giglioa, L., Quayleb, B., Lorenzc E., Morellid, F. (2016). Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 185, 210-220.

Science, 320, 1011.

Sheeren, D.; Fauvel, M.; Josipović, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.-F (2016). Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series. Remote Sens. 8, 734.

Sims, NC., Stone C., Coops, NC., Ryan, P. (2007). Assessing the health of Pinus radiata plantations using remote sensing data and decision tree analysis. N Z J For Sci, 37:57–80

Smigaj, M., Gaulton, R., Suárez, JC., Barr, SL. (2019). Combined use of spectral and structural characteristics for improved red band needle blight detection in pine plantation stands. For Ecol Manag 434:213–223.

Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol, 152, 159–177.

Sousa, A.M.O., Gonçalves, A.C., Mesquita, P., Marques da Silva, J.R. (2015). Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia. ISPRS J. Photogramm. Remote Sens, 101, 69–79.

Sousa, A.M.O.; Gonçalves, A.C.; da Silva, J.R.M. (2017). Above-Ground Biomass Estimation with High Spatial Resolution Satellite Images. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J.S., Ed.; InTech: Rijeka, Croatia, 2017; Volume, pp. 47–70.

Stoms, D.M., Estes. J.E. (1993). A remote sensing research agenda for mapping and monitoring biodiversity. International Journal of Remote Sensing, Vol. 14, No. 10, pp. 1839-1860.

Stone, C., Chisholm, LA., McDonald, S. (2003). Spectral reflectance characteristics of Pinus radiata needles affected by dothistroma needle blight. Can J Bot 81:560–569.

Taddese H, Asrat Z, Burud I, Gobakken T, Ørka HO, Dick ØB, Næsset E. (2020). Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing; 12(20):3335.

Taddese H, Asrat Z, Burud I, Gobakken T, Ørka HO, Dick ØB, Næsset E. (2020). Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing; 12(20):3335.

Tanase, M.A., Aponte, C., Mermoz, S.; Bouvet, A., Le Toan, T., Heurich, M. (2018). Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ, 209, 700–711.

Torbick N., Ducey, M. (2013). Quantifying disturbance to forest structure with optical, LiDAR, and SAR remote sensing. Measuring Disturbance to Forests with New Remote Sensing Technologies.

Torino, M.S.; Ortiz, B.V.; Fulton, J.P.; Balkcom, K.S.; Wood, C.W. (2014). Evaluation of Vegetation Indices for Early Assessment of Corn Status and Yield Potential in the Southeastern United States. Agron. J., 106, 1389–1401.

Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W.; Rodriguez, Z. (1995). Dissecting Amazonian Biodiversity. Science, Vol. 269, No. 5220, pp. 63-66.

Wang, K., Franklin, S.E., Guo, X., He, Y., McDermid. G.J. (2009). Problems in remote sensing of landscapes and habitats. Progress in Physical Geography, Vol. 33, No. 6, pp. 747-768.

Wang, K.,Franklin, S.E., Guo, X., Cattet, M. (2010). Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists. Sensors, Vol. 10, No.11, pp. 9647-9667.

Wehr, A. and Lohr, U. (1999). “Airborne Laser Scanning—An Introduction and Overview,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, No. 2-3, 1999, pp. 68-82.

Woodcock, C. E., Allen, A. A., Belward, A. S. et al. (2008). Free access to Landsat imagery.

Wu, W., Zhang, Z., Zheng, L., Han, C., Wang, X., Xu, J., Wang, X. (2020). Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors 20:3729.

Zhang, S., Huang, J., Hanan, J., Qin, L. (2020b). A hyperspectral GA-PLSR model for prediction of pine wilt disease. Multimed Tools Appl 79:16645–16661.

Zhang, X.; Liu, L.; Zhang, Y.; Zhang, J.; Nie, Y.; Zhang, H. (2010). Extraction of Shrub Vegetation by Object-Oriented Classification Method Based on ENVI ZOOM in High-Altitude Area: A Case of Dingri County. Geogr. Geo-Inf. Sci., 26, 104–108.

Zhao, C.; Lu, Z. (2018). Remote Sensing of Landslides—A Review. Remote Sens, 10, 279.

Zhu, X.; Liu, D. (2014). Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogramm. Remote Sens. 96, 1–11.

13 March, 2024
How to Cite
Getie, S., Alemayehu, A., & Mekoya, A. (2024). Relevance of Remote Sensing and its Applications in Forestry. A Critical Review. East African Journal of Forestry and Agroforestry, 7(1), 87-112.