Historical Trend Analysis and Future Projections of Rainfall in Amhara, Ethiopia

  • Antensay Mekoya Ethiopian Forestry Development Bahir Dar Center
  • Moges Molla Ethiopian Forestry Development Hawassa Center
  • Mulatu Workneh Ethiopia Meteorology Institute Addis Ababa
  • Tewachew Worku Ethiopian Forestry Development Bahir Dar Center
Keywords: Climatology, Climate Change, CORDEX Project GCMs, CMIP5 in RCP Scenarios
Share Article:


Understanding rainfall trends & projections is essential for water resource management. This study showed historical (1981-2020) and future (2021-2100) rainfall amounts and trends across 71 grid points separated by 0.44o in Amhara and Amhara’s five rainfall regimes (A3, A4, A5U, A5L, A6). Ground and satellite merged historical data from Ethiopia Meteorology Institute (EMI) and the Rossby Centre Regional Atmospheric Model (RCA) forced by an ensemble of the best-performed Global Circulation Models (GCMs) in Amhara, HadGEM2-ES of UK and MPI-ESM-LR of Germany, in three Representative Concentration Pathway (RCP) scenarios, RCP2.6, RCP4.5, and RCP8.5 from CORDEX project were the basis of dataset. Amhara’s annual, seasonal, and monthly historical rainfall trends mostly increased. During Jun-Sep (Kiremt), lower rainfall receiving regimes (A6, A5L, A5U) had a significant increasing trend (~ 4 mm/year), while wetter regimes (A3 & A4) had a non-significant increasing (< 1 mm/year) and decreasing (~ -0.5 mm/year) trends, respectively. Generally, compared to the climatology, the annual and Kiremt rainfall in Amhara is projected to increase in the near-term (2021-2040) and mid-term (2041-2060) and decrease in the long-term (2081-2100); Oct-Jan (Bega) rainfall is projected to increase in all future terms and all RCP scenarios while Feb-May (Belg) rainfall will be abrupt


Download data is not yet available.


Abegaz, W. B., & Mekoya, A. (2020). Rainfall Variability and Trends over Central Ethiopia. International Journal of Environmental Sciences & Natural Resources, 24(4). https://doi.org/10.19080/ijesnr.2020.24.556144

Abera, E. A., & Abegaz, W. B. (2020). Climatology & Weather Forecasting Seasonal and Annual Rainfall Trend Detection in Eastern Amhara, Journal of Climatology & Weather Forecasting, 1–10. https://doi.org/10.35248/2332-2594.2020.8.264

Akinsanola, A. A., & Zhou, W. (2019). Projections of West African summer monsoon rainfall extremes from two CORDEX models. Climate Dynamics, 52(3–4), 2017– 2028. https://doi.org/10.1007/s00382-018-4238-8

Alemu, M. M., & Bawoke, G. T. (2020). Analysis of spatial variability and temporal trends of rainfall in Amhara Region, Ethiopia. Journal of Water and Climate Change, 11(4), 1505–1520. https://doi.org/10.2166/wcc.2019.084

Amare, Z., Geremew, B., Kebede, N., & Amera, S. (2022). Climate Trends, variability, and impacts of ENSO on rainfall amount in Ethiopia: A Case study in Western Amhara National Regional State. Research Square, 1–20. https://doi.org/https://doi.org/10.21203/rs.3.rs-2078316/v1

Ayalew, D., Tesfaye, K., Mamo, G., Yitaferu, B., & Bayu, W. (2012a). Outlook of future climate in northwestern Ethiopia. Agricultural Sciences, 03(04), 608–624. https://doi.org/10.4236/as.2012.34074

Ayalew, D., Tesfaye, K., Mamo, G., Yitaferu, B., & Bayu, W. (2012b). Variability of rainfall and its current trend in Amhara region , Ethiopia. African Journal of Agricultural Research, 7(10), 1475–1486. https://doi.org/10.5897/AJAR11.698

Ayehu, G. T., Tadesse, T., & Gessesse, B. (2021). Spatial and temporal trends and variability of rainfall using long-term satellite product over the Upper Blue Nile Basin in Ethiopia. Remote Sensing in Earth Systems Sciences, 4(3), 199– 215. https://doi.org/10.1007/s41976-021-00060-3

Azadi, H., Moghaddam, S. M., Mahmoudi, H., Burkart, S., Debela, D. D., Teklemariam, D., & Lodin, M. (2020). Impacts of the Land Tenure System on Sustainable Land Use in Ethiopia. December 2018, 225–261.

Bahiru, W., & Zewdu, E. (2021). Analysis of Spatial and Temporal Climate Characteristics in North Eastern Ethiopia: Case Study of North Wollo Zone. International Journal of Energy and Environmental Science, 6(3), 57. https://doi.org/10.11648/j.ijees.20210603.12

Behailu, G., Yayeh, D., Terefe, T., & Ture, K. (2021). Comparative Analysis of Meteorological Records of Climate Variability and Farmers’ Perceptions in Sekota Woreda, Ethiopia. Climate Services, 23, 100239. https://doi.org/10.1016/j.cliser.2021.100239

Bekele-Biratu, E., Thiaw, W. M., & Korecha, D. (2018). Sub-seasonal variability of the Belg rains in Ethiopia. International Journal of Climatology, 38(7), 2940–2953. https://doi.org/10.1002/joc.5474

Belay, A. S., Fenta, A. A., Yenehun, A., Nigate, F., Tilahun, S. A., Moges, M. M., Dessie, M., Adgo, E., Nyssen, J., Chen, M., Griensven, A. Van, & Walraevens, K. (2019). Evaluation and Application of Multi-Source Satellite Rainfall Product CHIRPS to Assess Spatio-Temporal Rainfall Variability on Data-Sparse Western Margins of Ethiopian Highlands. 1–22.

Berhane, A., Hadgu, G., Worku, W., & Abrha, B. (2020). Trends in extreme temperature and rainfall indices in the semi-arid areas of Western Tigray, Ethiopia. Environmental Systems Research, 9(1). https://doi.org/10.1186/s40068-020-00165-6

Bewket, W., & Conway, D. (2007). A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. 1477(May), 1467–1477. https://doi.org/10.1002/joc.1481

Birara, H., Pandey, R. P., & Mishra, S. K. (2018). Trend and variability analysis of rainfall and temperature in the tana basin region, Ethiopia. Journal of Water and Climate Change, 9(3), 555–569. https://doi.org/10.2166/wcc.2018.080

Braun, J. Von. (1991). A Policy Agenda for Famine. Prevention in Africa. International Food Policy Institute, 13, 2. https://www.ifpri.org/publication/policy-agenda-famine-prevention-africa

Cochrane, L., & Vercillo, S. (2019). Youth perspectives:: migration, poverty, and the future of farming in rural Ethiopia. Bristol: Polity Press, 277–96.

CSA. (2007). The 2007 Population and Housing Census of Ethiopia: Federal Democratic Republic of Ethiopia Population Census Commission. 1–125.

Demaeyer, J., Penny, S. G., & Vannitsem, S. (2022). Identifying Efficient Ensemble Perturbations for Initializing Subseasonal-To-Seasonal Prediction. Journal of Advances in Modeling Earth Systems, 14(5). https://doi.org/10.1029/2021MS002828

FAO. (2014). Food and Agriculture Organization of the United Nations Regional Office for Africa. FAO. https://doi.org/https://www.fao.org/3/i3620e/i3620e.pdf

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. International Journal of Climatology, 39(1), 18–30. https://doi.org/10.1002/joc.5777

Gedefaw, M. (2023). Assessment of changes in climate extremes of temperature over Ethiopia. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2178117

Grose, M. R., Narsey, S., Trancoso, R., Mackallah, C., Delage, F., Dowdy, A., Di Virgilio, G., Watterson, I., Dobrohotoff, P., Rashid, H. A., Rauniyar, S., Henley, B., Thatcher, M., Syktus, J., Abramowitz, G., Evans, J. P., Su, C. H., & Takbash, A. (2023). A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. Climate Services, 30(August 2022). https://doi.org/10.1016/j.cliser.2023.100368

Haile, M., Herweg, K., & Stillhardt, B. (2006). Sustainable Land Management – A New Approach to Soil and Water Conservation in Ethiopia Sustainable Land Management – A New Approach to Soil and Water Conservation in Ethiopia.

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–19. https://doi.org/10.1038/s41597-020-0453-3

Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., & Sanderson, B. M. (2018). Selecting a climate model subset to optimise key ensemble properties. Earth System Dynamics, 9(1), 135–151. https://doi.org/10.5194/esd-9-135-2018

Huang, Z. P., & Chen, Y. F. (2011). Hydrostatistics (in Chinese). Beijing, China: China Waterpower Press, 1st edition., 209e.

IPCC. (2019). Climate Change and Land: an IPCC special report. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1–864. https://www.ipcc.ch/srccl/

Jabal, Z. K., Khayyun, T. S., & Alwan, I. A. (2022). Impact of Climate Change on Crops Productivity Using MODIS-NDVI Time Series. June. https://doi.org/10.28991/CEJ-2022-08-06-04

Jain, S. K., Kumar, V., & Saharia, M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology Published by John Wiley & Sons Ltd on Behalf of Royal Meteorological Society., 978(April 2012), 968–978. https://doi.org/10.1002/joc.3483

Kamalanandhini, M., & Annadurai, R. (2021). Assessment of five meteorological indices for monitoring the drought condition in Chengalpattu District, Tamilnadu, India. Materials Today: Proceedings, 46(xxxx), 3699–3703. https://doi.org/10.1016/j.matpr.2021.01.850

Kassahun, M., Ture, K., & Nedaw, D. (2023). Evaluation of CORDEX Africa regional climate models performance in simulating climatology of Zarima sub ‑ basin northwestern Ethiopia. Environmental Systems Research. https://doi.org/10.1186/s40068-023-00325-4

Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J., Engelbrecht, F., Fischer, E., Fyfe, J., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., & Zhou:, T. (2021). Future global climate: scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009157896.006.553

Likinaw, A., Alemayehu, A., & Bewket, W. (2023). Trends in Extreme Precipitation Indices in Northwest Ethiopia: Comparative Analysis Using the Mann–Kendall and Innovative Trend Analysis Methods. Climate, 11(8). https://doi.org/10.3390/cli11080164

Luhunga, P. M., Kijazi, A. L., Chang’a, L., Kondowe, A., Ng’ongolo, H., & Mtongori, H. (2018). Climate change projections for Tanzania Based on high-resolution regional climate models from the Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa. Frontiers in Environmental Science, 6(OCT), 1–20. https://doi.org/10.3389/fenvs.2018.00122

Mekoya, A., & Molla, M. (2024). Testing CORDEX GCMs for Projecting Rainfall in Amhara, Ethiopia. African Journal of Climate Change and Resource Sustainability, 3(1), 24– 48. https://doi.org/10.37284/ajccrs.3.1.1730.24

Mesfin, S., Adem, A. A., Mullu, A., & Melesse, A. M. (2021). Historical Trend Analysis of Rainfall in Amhara National Regional State (Chapter 25 of a book: Nile and Grand Ethiopian Renaissance Dam, Springer Geography). Springer Nature Switzerland AG 2021 A. M. Melesse et Al. (Eds.), September. https://doi.org/10.1007/978-3-030-76437-1

Musayev, S., Mellor, J., Walsh, T., & Anagnostou, E. (2021). Development of an agent-based model for weather forecast information exchange in rural area of bahir dar, ethiopia. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094936

NMA. (1996). Climatic and Agroclimatic Resources of Ethiopia. Climatic and Agroclimatic Resources of Ethiopia.

Rettie, F. M., Gayler, S., Weber, T. K. D., Tesfaye, K., & Streck, T. (2023). Comprehensive assessment of climate extremes in high-resolution CMIP6 projections for Ethiopia. Frontiers in Environmental Science, 11(May). https://doi.org/10.3389/fenvs.2023.1127265

Salas, J. D. (1993). Analysis and Modeling of Hydrological Time Series. Handbook of Hydrology, McGraw-Hill, New York, 19.1-19.72.

Seenu, P. Z., & Jayakumar, K. V. (2021). Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14(7). https://doi.org/10.1007/s12517-021-06906-w

Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24(8), 973–983. https://doi.org/10.1002/joc.1052

Şen, Z. (2012). Innovative Trend Analysis Methodology. Journal of Hydrologic Engineering, 17(9). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556

Sisay, K., Thurnher, C., & Hasenauer, H. (2017). Daily climate data for the Amhara region in Northwestern Ethiopia. International Journal of Climatology, 37(6), 2797–2808. https://doi.org/10.1002/joc.4880

Sisay, K., Vienna, L. S., Thurnher, C., Vienna, L. S., Hasenauer, H., & Vienna, L. S. (2016). Daily climate data for the Amhara region in Northwestern. INTERNATIONAL JOURNAL OF CLIMATOLOGY. https://doi.org/10.1002/joc.4880

SUN, S., CHEN, H., SUN, G., JU, W., WANG, G., LI, X., YAN, G., GAO, C., HUANG, J., ZHANG, F., ZHU, S., & HUA, W. (2017). Attributing the Changes in Reference Evapotranspiration in Southwestern China Using a New Separation Method. American Meteorological Society, 777–798. https://doi.org/10.1175/JHM-D-16-0118.1

Terefe, S., Bantider, A., Teferi, E., & Abi, M. (2022). Spatiotemporal trends in mean and extreme climate variables over 1981–2020 in Meki watershed of central rift valley basin, Ethiopia. Heliyon, 8(11), e11684. https://doi.org/10.1016/j.heliyon.2022.e11684

Teshome, A., & Zhang, J. (2019). Increase of extreme drought over Ethiopia under climate warming. Advances in Meteorology, 2019. https://doi.org/10.1155/2019/5235429

Tirfi, A. G., & Oyekale, A. S. (2022). Analysis of trends and variability of climatic parameters in Teff growing belts of Ethiopia. Open Agriculture, 7(1), 541–553. https://doi.org/10.1515/opag-2022-0113

UNICEF. (2018). Budget Brief Amhara Regional State 2007/08 – 2015/16. Unicef, 1–16.

Van Vooren, S., Van Schaeybroeck, B., Nyssen, J., Van Ginderachter, M., & Termonia, P. (2019). Evaluation of CORDEX rainfall in northwest Ethiopia: Sensitivity to the model representation of the orography. International Journal of Climatology, 39(5), 2569–2586. https://doi.org/10.1002/joc.5971

Ware, M. B., Matewos, T., Guye, M., Legesse, A., & Mohammed, Y. (2023). Spatiotemporal variability and trend of rainfall and temperature in Sidama Regional State, Ethiopia. Theoretical and Applied Climatology, 153(1–2), 213–226. https://doi.org/10.1007/s00704-023-04463-8

Worou, K., Fichefet, T., & Goosse, H. (2023). Future changes in the mean and variability of extreme rainfall indices over the Guinea coast and role of the Atlantic equatorial mode. Weather and Climate Dynamics, 4(2), 511–530. https://doi.org/10.5194/wcd-4-511-2023

Wubaye, G. B., Gashaw, T., Worqlul, A. W., Dile, Y. T., Taye, M. T., Haileslassie, A., Zaitchik, B., Birhan, D. A., Adgo, E., Mohammed, J. A., Lebeza, T. M., Bantider, A., Seid, A., & Srinivasan, R. (2023). Trends in Rainfall and Temperature Extremes in Ethiopia: Station and Agro-Ecological Zone Levels of Analysis. Atmosphere, 14(3). https://doi.org/10.3390/atmos14030483

Xu, L., Sun, S., Chen, H., Chai, R., Wang, J., Zhou, Y., Ma, Q., Chotamonsak, C., & Wangpakapattanawong, P. (2021). Changes in the reference evapotranspiration and contributions of climate factors over the Indo – China Peninsula during 1961 – 2017. International Journal of Climatology Published by John Wiley & Sons Ltd on Behalf of Royal Meteorological Society., December 2020, 1–19. https://doi.org/10.1002/joc.7209

Yimer, S. M., Bouanani, A., Kumar, N., Tischbein, B., & Borgemeister, C. (2022). Assessment of Climate Models Performance and Associated Uncertainties in Rainfall Projection from CORDEX over the Eastern Nile Basin, Ethiopia. Climate, 10(7). https://doi.org/10.3390/cli10070095

Zegeye, M. K., Bekitie, K. T., & Hailu, D. N. (2022). Spatio ‑ temporal variability and trends of hydroclimatic variables at Zarima Sub ‑ Basin North Western Ethiopia. Environmental Systems Research, 5. https://doi.org/10.1186/s40068-022-00273-5

18 February, 2024
How to Cite
Mekoya, A., Molla, M., Workneh, M., & Worku, T. (2024). Historical Trend Analysis and Future Projections of Rainfall in Amhara, Ethiopia. East African Journal of Forestry and Agroforestry, 7(1), 19-49. https://doi.org/10.37284/eajfa.7.1.1760