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ABSTRACT 

For several nations who are developing, forests play a crucial role in rural life. 

Due to the incredible challenges associated with staff, logistics, and 

chronological consistency of field-based surveys for forest management, a 

variety of sources of data obtained by airborne, space-borne, and terrestrial 

remote sensing sensors are now essential sources of knowledge for studies on 

the spatiotemporal patterns of forests. Most recently, understanding of forests 

and their conservation has been derived primarily from satellite imagery. The 

process of organizing and carrying out procedures for the management and use 

of forests can be done with the assistance of remote sensing in order to achieve 

economic, social, cultural, and environmental goals. Satellite remote sensing has 

been providing ever-more-advanced knowledge about woodland structure, 

management, monitoring, and oversight whenever the first civilian earth-

observing program was launched. This article reviewed the application of remote 

sensing on forestry. Data were gathered from published research papers, books, 

internet resources, and expert observation. Remote sensing’s synoptic view, 

availability in a rage of spatial-temporal scales, high degree of homogeneity, 

inexpensiveness as well as the increasing trend in availability make it special in 

forest science. As observed from the review, remote sensing technology is 

critical in forest management. It helps to provide up to date information on forest 

cover change, forest fire, forest disturbance, forest wildlife management, forest 

biomass and others. Remote sensing is vital in providing scientific information 

in forest resources monitoring and management. 
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INTRODUCTION 

Forest is defined as “land with tree crown cover 

(or equivalent stocking level) of more than 10% 

and an area of more than 0.5 ha" (FAO, 2015). 

Based on the definition, trees should reach a 

height of 5 m to the minimum at maturity in situ, 

and the area does not embrace land that is chiefly 

under agricultural or urban land use. Ethiopia's 

forest definition is different from that of the FAO. 

Forest in the Ethiopian case is defined as “land 

spanning at least 0.5 ha covered by trees and 

bamboo, attaining a height of at least 2 m and a 

canopy cover of at least 20% or trees with the 

potential to reach these thresholds in situ in due 

course” (MEFCC, 2015). Forests and trees are 

essential to the livelihoods of farmers worldwide, 

but especially in nations that are developing 

(FAO, 2015; Zhao and Lu, 2018). According to 

FAO (2015), there were roughly over 4.06 billion 

ha of forest cover worldwide (0.52 ha per person 

on average). This represents 31% of the total land 

area. The significance of forests for both the 

climate and human well-being is widely 

recognized (FAO, 2015). Forests are subjected to 

profound alterations despite their high global 

significance, mainly because of human-induced 

sources in addition to the natural cause. 

Field-based surveys for forest management are 

known to present significant challenges due to 

labor shortages, logistics, and temporal 

repeatability. However, a variety of data sources, 

including airborne, space-borne, and terrestrial 

remote sensing sensors, have made data on the 

spatiotemporal dynamics of forests increasingly 

important. At the moment, information regarding 

forests and their sustainable management is 

mostly obtained from satellite data. Forest 

management, which is the process of organizing 

and carrying out methods for the oversight and 

utilization of forests to satisfy the goals of forests 

in the areas of the environment, economy, society, 

and culture, can benefit from the use of remote 

sensing (Barbierato et al., 2020; Grinde et al., 

2020; Zhao and Lu, 2018). Remote sensing is 

essential to forest management in order to 

maximize the benefits of forests, including their 

capacity to supply raw materials, regulate the 

water cycle, absorb CO2 from the atmosphere, 

support a wide variety of species, and offer 

recreational opportunities (Zhao & Lu, 2018). For 

extensive forest areas, remote sensing has been 

used for huge data collection that enables accurate 

vegetation and forest mapping. Remote sensing 

technologies have been used to know forest cover 

changes, quantify the changes, identify various 

forest types, and even estimate the number of trees 

in a specified area. Thus, this review paper aims 

to explore the relevance and broader applications 

of remote sensing technologies in forestry. The 

definition of remote sensing with respect to 

forestry, the relevance of remote sensing in 

forestry, and remote sensing platforms and 

sensors were covered in the first section. Then, the 

role of remote sensing in forestry, mainly forest 

cover change mapping, forest change detection, 

detecting forest fires, biomass estimation, crown 

height measurement, disease and insect outbreak 

inspection, forest-wildlife management, and 

disturbance detection, were elaborated and 

discussed.  

METHODOLOGY 

This review paper examines the relevance and role 

of remote sensing technology in forestry. Sources 

of data included published papers, books, online 

databases, and expert observations. Reports for 

accessible literature were mainly discovered using 

Google Scholar, the Web of Science, and 

SCOPUS.  

Published journal articles, books, online 

resources, and expert observation were used as 

sources of data. The search for available literature 

was mostly done through Google Scholar, Web of 

Science, and SCOPUS. To download published 

articles, books, and online resources, Hvar.is, e-

journals, SCI Hub, and Library Genesis were 
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used. Additional references were identified using 

the bibliographies cited in the retrieved literature. 

The body of literature was summarized through 

the use of textual narrations, tables, and figures. 

REMOTE SENSING (RS) 

According to Jensen (2007), RS refers to "the 

noncontact recording of data from the visible, 

infrared, microwave, and ultraviolet portions of 

the electromagnetic spectrum''. When it comes to 

forests, remote sensing is a method of gathering 

and analyzing data without having the instruments 

used to collect the data in close proximity to the 

woods (Cochran et al., 2020). According to 

Franklin (2010), "remote sensing is both 

methodology and technology. Franklin (2010) 

highlighted that “remote sensing is both 

technology (sensors, platforms, transmission and 

storage devices, and so on) and methodology 

(radiometry, geometry, image analysis, data 

fusion, and so on). 

Initially, remote sensing was mostly conducted 

from relatively low altitude platforms like hot air 

balloons, kites, and homing pigeons, all of which 

were characterized by uncertainty and instability 

(Colwell, 1964). From that point forward, 

hundreds of Satellites (earth observing satellite) 

are in orbit and offering a variety of remotely 

sensed data. The ranges from optical to radar, 

multispectral to panchromatic imaging, and local 

to global scale. Remote sensing has long been 

identified as an effective and efficient tool in 

forestry studies such as forest cover mapping, 

forest change detection, fire detection, forest 

inventory, forest health, forest sustainability, 

forest growth, and forest ecology etc. (Kohl et al., 

2006). 

Platforms and Sensors for Remote Sensing  

As demonstrated in Figure 1, systems for remote 

sensing come in a variety of platforms and sensor 

types. They have been split into two groups 

according to distinct technical approaches. These 

are the sensors that are both passive and active. On 

the other hand, unmanned airliners (UAVs), such 

as drones with fixed wings and rotaries, are among 

the platforms used for imagery collection, along 

with Earth-observing satellites that are aircraft, 

and helicopters. 

Among the most popular detectors used in remote 

sensing applications are optical imaging devices. 

A typical digital photograph and an optical 

imaging system are comparable in terms of design 

and use, with the exception that the latter may 

collect data in the electromagnetic spectrum 

wavelengths other than visible light, such as 

infrared and thermal wavelengths. Land 

coverings, notably forest and canopy coverage, 

can be identified by variations in wavelength at 

which various elements on Earth absorb and 

reflect light. The total number of bands and the 

widths of those bands by which picture data is 

obtained vary amongst optical sensors. 

Hyperspectral sensors include thousands of 

considerably tighter bands, while multispectral 

detectors have a fixed number of bands (Figure 

2). Systems that rely on sunlight that is reflected 

or thermal energy released are known as passive 

sensors. These systems comprise optical and 

thermal devices. Smoke and clouds are 

impervious to passive sensors. Their night-time 

usability is hindered by cloud-induced haze. 

Active sensors are devices that generate a pulse 

and measure the backscatter that reflects back to 

the sensor, such as Synthetic Aperture Radar 

(SAR) and Light Detection and Ranging (LiDAR) 

systems. In addition to operating at night, active 

sensors can pass through smoke and clouds. SAR 

sensors are able to distinguish between distinct 

land cover elements according to factors including 

water content, surface roughness, and the 3D 

structure of objects. On the other hand, LiDAR 

systems use laser pulses to measure the reflected 

light and the distance to an object. The target can 

then be represented digitally in three dimensions 

by utilizing variations in laser return timings and 

wavelengths. 

Depending to how long it requires for the sensor 

to return to the exact same place, space-borne 

sensors continuously monitor various parameters 

at scheduled times. For instance, Landsat sensors 

return to the same spot-on Earth each 16 days. The 

ability to fly in reaction to particular events, like 

http://creativecommons.org/licenses/by/4.0/
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fires, and the ability to fly under clouds, especially 

with Unmanned Aerial Vehicles (UAVs), address 

an important drawback of Earth observation 

satellites. Sentinel and other more recent satellites 

are usually created as part of a constellation of 

multiple satellites to improve revisit time

Figure 1: Typical platforms for remote sensing and sensor combinations  

 
Note: For each platform, the most often used sensors are shown on the left. (on the right) SAR data for the two 

polarizations via Sentinel 1 (bottom), LiDAR point cloud images of vegetation next to a river (middle), and 

true-color digital aerial photography and fake color with NIR sensing (top). 
Source Lechner et al. (2020) 

Figure 2: Comparing Hyperspectral and Multispectral Bands (Sentinel 2 and Landsat 8) 

 
Source Lechner et al. (2020) 
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Table 1: Relevance of remote seining Applications of RS in Forestry 

Relevance of remote sensing Descriptions Sources 

1 Synoptic View of the 

imagery 

 

• The images offer a synoptic perspective. 

• The imaging fully depicts the surroundings within its field of vision. 

• Imaging produces a map-like format that provides a thorough survey of the imaged area 

rather than field data. 

• Facilitates comprehensive mapping and tracking of important ecological variables, like 

changes in land cover. 

Lechner et al., (2020). 

2 Accessibility at different 

Spatio-Temporal Scales 

 

• No matter where you are, you can access remotely sensed data at anytime and anywhere, 

which allows for a variety of uses. 

• It is possible to investigate the origins of contemporary environmental issues by going 

back in time and using historical remote-sensing data. 

Lechner et al., (2020). 

3 Homogeneity • Has a high degree of homogeneity 

• No human-caused issues, such as variations in measurement techniques between nations. 

Lechner et al., (2020). 

4 Easy to convert • straightforward to transform into digital photos and merge with other spatial datasets in a 

GIS. 

Lechner et al., (2020). 

5 Not expensive • It is a cost-effective method of data collection per unit area 

• However, the financial expenditures associated with building, launching, and operating 

satellite remote-sensing systems are significant. 

• Nevertheless, important datasets for environmental science research are frequently made 

publicly and freely accessible. 

• For instance: Landsat series and the European Space Agency (ESA) satellites are freely 

available 

Lechner et al., (2020). 

6 Growing accessibility and 

development in data 

provision 

• In addition to being more readily available, there is an increasing tendency in the 

provision of data products alongside the image data 

• Minimizes the communication gap between specialists and environmental scientists and 

the requirement for expert knowledge for image analysis. 

Lechner et al., (2020). 

http://creativecommons.org/licenses/by/4.0/


East African Journal of Forestry and Agroforestry, Volume 7, Issue 1, 2024 
Article DOI: https://doi.org/10.37284/eajfa.7.1.1818 

92 | This work is licensed under a Creative Commons Attribution 4.0 International License. 

Remote Sensing and Its Relevance in Forestry  

The six main reasons for remote sensing is 

valuable for gathering information is summarised 

in Table 1. 

Forest Cover Change Detection 

To determine the amount of forest cover loss and 

gain over time, it is essential to detect changes in 

forest cover. While knowledge of forest change is 

vital everywhere, it is particularly crucial in the 

tropics, where land-use change is changing 

quickly. According to FAO (2004), almost a third 

of the surface of the planet is now utilized for 

crop-growing or pasture for cattle, and the 

majority of this land for farming has been 

developed on top of natural forests, grasslands, 

and wetlands that offer vital habitats for species 

and services to humanity. The present state of 

affairs showed that farming methods have been a 

significant factor in changing the landscape within 

the globe. This situation entails the need to 

conserve biological diversity (Kondratyev, 1998) 

and design meaningful conservation strategies. 

Research conducted in the field can record 

changes in the forest cover at the local level, but 

remote sensing-based methods are needed to 

record these alterations at both the global and 

regional levels (Kumar et al., 2010). 

Remote sensing-based change detection is a 

popular application that investigates multi-

temporal datasets. It involves using datasets to 

distinguish between areas of land cover change 

between dates of imaging (Dalmiya et al., 2019). 

Many investigations using satellite-based 

detection techniques have been conducted in 

various nations to determine the extent of the land 

use and land cover change (LULCC) (e.g., Deng 

et al., 2013; Geng et al., 2015; Lark et al., 2017; 

Gibson et al., 2018; Ru-Mucova et al., 2018; Lei 

and Zhu, 2018; Negassa et al., 2020; Musei et al., 

2021). There is a great deal of susceptible ground 

being identified, and this threat is caused by 

anthropogenic-driven deforestation (Fokeng et al., 

2019). 

For example, Negassa et al. (2020) conducted 

research at Komto Forest, Gog district of 

Gambella, Ethiopia, and identified the forest 

cover change in the years 1991 to 2019 (Figure 3) 

using the land surface times series images of TM 

1991, ETM+ of 2002, and OLI-TIRS of 2019 and 

produced a forest cover map. He found 4.18% 

dense forest loss and 0.7% open forest loss 

annually (Table 2). Using remote sensing change 

detection techniques, Othow et al. (2017) 

investigated the rate of LULCC impact on the 

forest in Gambella, Ethiopia, between 1990 and 

2017. Three images—a 1990 Landsat TM image, 

a 2002 ETM+ image, and a 2017 OLI-TIRS 

image—were used to construct the land cover 

map. The outcome showed that annual forest 

coverage was declining by 0.33%. 

Musei et al. (2021) used LandSat satellite imagery 

and a cloud-based computer system to calculate 

the variation in the amount of forest in Somalia 

from 2000 to 2019. They discovered that there 

was an almost 23% decrease in the amount of 

forest cover, from 87,294 hectares in 2000 to 

67,199 hectares in 2019. The LANDSAT/TM 

satellite images from 1986 to 1990 show a 

decrease in Ethiopian forest by 3.93%, or 45,055 

km2. Similarly, a finding by Mideksa (2009) at 

Adaba-Dodola Forest, Ethiopia, indicated an 

annual forest loss of 0.54%. The author used a 

time series of LandSat images from 1986 to 2005 

and supervised and multi-criteria evaluation 

algorism to show the changes. The summary of 

studies on forest change detection in east Ethiopia 

is given in Table 3. 

Mapping of Forest Types 

At a variety of geographical, temporal, and 

conceptual scales, forests can be observed, 

identified, classified, and monitored thanks to 

remote sensing and digital image processing 

(Rogan & Chen, 2004). Forest type mapping is 

vital for example; for forest management, habitat 

and biodiversity assessment, monitoring of forest 

disturbances, and carbon cycle and energy budget 

estimation (Ballanti et al., 2016; Fassnacht et al., 

2016; Sheeren et al., 2016). By placing the 

identified pixels in the proper geographic context, 

the necessary map is created. Generally, there are 

two types of classification techniques to classify 

http://creativecommons.org/licenses/by/4.0/
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the forest types from a satellite image (Nagamani 

& Mariappan, 2013). These are the supervised and 

unsupervised classifications. When it comes to 

unsupervised categorization, computer algorithms 

analyze the scene's whole spectrum of data and 

group pixels that share comparable spectrum 

characteristics into classes based on the particular 

clustered algorithm that was applied. In contrast, 

the operator in supervised classification uses the 

ground-based data to allocate individual pixels 

(training sites) to different land cover categories. 

The leftover pixels are then assigned to land cover 

classes based on the statistical resemblance of the 

spectral characteristics after computer algorithms 

have analyzed the spectral characteristics of 

various collections of pixels. 

During the past 35 years, the total number of 

investigations devoted to the classification of 

different kinds of trees has grown steadily (Figure 

4). On the other hand, the nearly exponential rise 

that occurred between the years 2005–2010 and 

2010–2015 can also be attributed to the growing 

quantity of airborne hyperspectral and LiDAR 

data, as demonstrated by the sensor-specific 

frequencies (rushed lines in Figure 4). 

Table 2: Rate of change in East Africa's forest cover  

Land cover Area (ha) Area lost in ha 

year 1991 2002 2019 1991-2002 2002-2019 1991-2019 

Dense forest cover 312.94 250.06 195.95 -5.72 -3.18 -4.18 

Open forest cover 173.86 166.7 154.30 -0.65 -0.73 -0.7 

 

Figure 3: Forest covers map of Komto Forest during 1991, 2002 and 2019 

 
Source: Negassa et al., 2020. 
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Table 3. Brief summary of for forest cover change detection at different areas in Ethiopia. 

Study area Year 

covered 

Classification 

and algorism 

Data types Annual gain 

or loss (%) 

Sources 

Somalia 2000 to 

2019 

Supervised Landsat-based forest 23% forest 

cover loss 

Musei et 

al. 

(2021) 

Komto Forest, 

Gog district of 

Gambella, 

Ethiopia 

1991 to 

2019 

Supervised Landsat TM image of 

1991, ETM + of 2002 

and OLI-TIRS of 

2019 

4.18% loss Negassa 

et al. 

(2020) 

Adaba-Dodola 

Forest, Ethiopia 

1986 to 

2005 

Supervised and 

Multi Criteria 

Evaluation  

technique 

Landsat images of the 

year 1986, 

2000 2005 

0.57% loss Mideksa 

(2009) 

Komto Forest, 

Gog district of 

Gambella, 

Ethiopia 

1990 to 

2017 

Maximum 

likelihood 

technique of the 

supervised 

classification 

Landsat TM image 

from 1990, ETM+ in 

2002, and OLI TIRS 

in 2017. 

0.33% loss Othow 

et al. 

(2017 

Figure 4: Study frequency across a five-year span 

 
Source: Fassnacht et al. (2019) 

Note: The histogram is topped with sensor-

specific frequencies per year; the plotted values 

are scaled on the y-axis by a factor of three to 

emphasize the trends; offsets were added to 

improve the figure's readability; light horizontal 

lines map to the y-axes (at y = 0) for every kind of 

sensor. 

Several studies (Dorren et al., 2003; Zhang et al., 

2010; Zhu and Liu, 2014; Liu et al., 2018; 

Isuhuaylas et al., 2018; Pasquarella et al., 2018; 
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Persson et al., 2018; Grabska et al., 2019; Cheng 

& Wang, 2019; and Cheng et al., 2021) applied 

remote sensing technologies for forest type 

classification and mapping in different parts of the 

country (Table 4). For example, Liu et al. (2018) 

used spectral and spatial information obtained 

from multi-source remote sensing data along with 

a machine learning method to achieve forest type 

categorization for Wuhan, China. Pasquarella et 

al. (2018) extracted information on forest type for 

the western part of Massachusetts by combining 

temporal and spectral features obtained from 

Landsat time series images. Zhang and colleagues 

(2010) employed near-infrared and near-spectral 

bands to identify shrub forests in higher-altitude 

regions of Dingri County, Tibet Autonomous 

Region, China, as well as to estimate temporal and 

spectral features. In 2019, Grabska et al. utilized 

Sentinel-2 time series remote sensing images to 

extract information on different forest types 

through the calculation of temporal and spectral 

features, while Cheng and Wang (2019) 

recognized the temporal patterns of several forest 

types and joint them with spectral indexes and 

bands to identify forest types in Hunan, China. 

In Chinese geographical regions, such as medium 

and high latitudes, intricate mountainous areas, 

foggy and rainy places, Cheng et al. (2021) 

extracted SST (spectral, spatial, and temporal) 

forest-type categorization characteristics. 

Employing a time series of Landsat-8 data and 

DEM, Isuhuaylas et al. (2018) evaluated the 

effectiveness of several machine-learning 

techniques: SVM, RF, and k-Nearest Neighbour 

(kNN) for categorization of the Andes Mountain 

forest. Investigators reached an agreement that 

while the kNN proved more reactive to noise-

filled training data, the SVM and RF approaches 

provided comparable accuracy in differentiating 

mountain forest from scrublands. 

Hościło and Lewandowska (2019) employed 

topographical information along with multi-

temporal Sentinel-2 data to provide an overview 

of their analysis of the broad mountain range of 

southern Poland. In this research, a map of forests 

and non-forests as well as the two types of forests 

(broadleaf and coniferous) were obtained using a 

random forest classifier algorism. The outcome 

demonstrated the importance of using topographic 

details (DEM data) in conjunction with sentinel 2 

data for the designation of forest types. The total 

accuracy of the result was 94.8% for the 

categorization of the forest's type and 98.3% for 

the wood/non-forest cover.  

The advantages of combining Landsat time-series 

data alongside topographic information for the 

categorization of forest types were also confirmed 

by Zhu and Liu's (2014) investigation. 

Investigators classified the broadleaf forest using 

the hierarchy-based approach, obtaining a higher 

overall accuracy (92.6%), before dividing it into 

oak and mixed mesophytic forests. Furthermore, 

employing all bands from the multi-temporal 

Sentinel-2 images, Persson et al. (2018)'s latest 

analysis verified the highest overall accuracy 

(88.2%) in the discrimination of tree species. 
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Table 4: A summary of Remote sensing application in forest type classification across the world 

 Algorisms used Features 

used/information 

explored 

Data types Function Overall accuracy References 

Wuhan, China Random Forest spectral and spatial 

features, textural 

feature derived 

from Sentinel-2 

multi-temporal 

Landsat-8, Sentinel-2 

and SRTM digital 

elevation model 

(DEM) 

classification of four tree 

species and for mixed forest 

types 

82.8% Liu et al. (2018) 

Dingri, China Object-oriented multi-

scale image segmentation 

techniques 

spectral features ASTER data (NIR and 

infrared bands) 

identified shrub vegetation 

types 

- Zhang et al. 

(2010) 

western portion of 

Massachusetts 

Landsat time series 

algorithms 

spectral and 

temporal features 

Landsat time series 

images 

extract forest type information - Pasquarella et al. 

(2018) 

Polish Carpathian 

Mountains 

Random Forest 

classification 

temporal and 

spectral features 

Time series of 

Sentinel-2  images 

mapping mixed woodlands' 

tree species  

- Grabska et al. 

(2019 

Hunan, China Time-weighted dynamic  Combined temporal 

patterns and 

spectral indexes 

Landsat-8 and  

Sentinel-2  time-series 

identify forest types 93.81% Cheng and Wang 

(2019) 

Chinese (middle 

and high latitudes, 

complex 

mountainous) 

Gini criterion in the 

random forest algorithm 

Spectral feature 

Temporal features 

Sentinel-2 and Landsat identifying forest types > 85% Cheng et al. 

(2021) 

Andes Mountain machine-learning 

approaches: (SVM, RF 

and k-Nearest Neighbor 

(kNN)) 

Temporal features Landsat-8 data and 

DEM 

classification of Andes 

mountain forest 

- Isuhuaylas et al. 

(2018) 

Steep mountain 

terrain areas of 

Austria 

Object-based 

classification 

method 

Spectral bands Landsat TM band 4 

and 5 and DEM 

classification of forest stand 

type mapping 

accuracy of 

classification 

improved 

Dorren et al. 

(2003) 

Southern Poland Random Forest classifier Temporal features Multi-temporal 

Sentinel-2 data 

Eight species of trees are 

identified, the vegetation type 

(broadleaf and coniferous) is 

classified, and the amount of 

tree cover is divided into two 

categories. 

98.3% and 94.8% 

accuracy for forest 

and forest type 

classification 

Hościło  and 

Lewandowska 

(2019) 
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Biomass Estimation 

Biomass estimation is very important for the 

changing climate that affects the daily lives of 

many of the societies in the world. It provides 

important information for natural resource 

management and monitoring. Assuring longevity 

through managing forests procedures includes 

estimating biomass as a critical component 

(Duncanson et al., 2015). Forest biomass 

estimation provides ample information for 

sustainable forest and environmental 

management. A change in above-ground biomass 

(AGB) stock helps to monitor forest dynamics in 

a certain specific area. However, in many of the 

tropical countries where a significant percentage 

of forests exist, biomass estimations are not 

precise (Duncanson et al., 2015; Taddese et al., 

2020). It is due to the reality that field-based 

sample surveys are the mainstay of the existing 

tradition in tropical nations for assessing, 

tracking, and estimating changes in forest 

resources. Because of the substantial expenses, 

logistical difficulties, and restricted field 

availability, this approach has a tiny sample size 

(Lu, 2006; Duncanson et al., 2015; Taddese et al., 

2020). Furthermore, the intricate structural 

characteristics of the natural environment lead to 

discrepancies in the calculation of biomass (Lu, 

2006). For example, it is challenging to accurately 

estimate the height of trees in tropical forests due 

to their highly dense canopy cover. 

But over the last thirty years, a great deal of 

investigation has been conducted on the 

calculation of biomass using remote sensing data 

(Hall et al., 2006; Labrecque et al., 2006; Lu, 

2007; Ji et al., 2012; Dube and Mutanga, 2015; 

Gizachew et al., 2016; Timothy et al., 2016). Most 

of the studies have utilized optical remote sensing 

data, as it is operational at local to global scales 

with sensors including the Landsat Thematic 

Mapper (TM), Advanced Very High Radiometric 

Resolution (AVHRR), and Moderate Resolution 

Imaging Spectroradiometer (MODIS) providing 

globally consistent spatial data. Assessment 

above-ground biomass are also possible using 

synthetic aperture radar (SAR) and airborne laser 

scanning data (LiDAR) (Asner et al., 2012; 

Anderson et al., 2014; Mitchell et al., 2017). 

Timothy et al. (2016) summarized the optical 

remote sensing (RS) data that are used in biomass 

estimation (Table 5). 

The existing scientific works explored the 

significant contribution of some types of RS data, 

such as Spectral Index’s (SIs) and Spectral Bands 

(SBs), in AGB estimation (Tables 6 and 7). 

Notably and widely utilized data source for 

aboveground biomass in forests has been images 

collected by Landsat (Table 5). For example, 

Günlü et al. (2014) conducted a study on AGB 

estimate in Northwestern Turkey using Landsat 

data, and found that SIs performed better in 

estimating AGBs. AGB estimate was also found 

to be enhanced by combining SB and textural 

characteristics in a 2007 study by Lul on AGB 

estimation using Landsat TM data in the Brazilian 

Amazon. Given that primary forests contain 

intricate canopy systems, the outcome 

demonstrated the significance of texture 

information. Tables 5 and 6 show the SBs and SIs 

used for biomass estimation in different areas, 

respectively.
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Table 5: A summary table for the use of optical remote sensing data in estimating biomass. 

Sensor 

used 

Area of 

investigation  

Approach applied Main results  Reference 

LiDAR & 

SPOT-5 

HRG 

imagery 

Western China, 

Gansu province 

Multiple Stepwise 

regression  

When combined with SPOT-5 

data, LiDAR data can improve 

biomass estimation accuracy (R2 

= 0.736). 

Qisheng 

(2012) 

Landsat 

PALSAR 

East Kalimantan, 

Indonesia 

Discrete wavelet 

transforms (DWT) & 

Brovery transforms were 

used. 

Biomass estimates ranged 

between 0.70-0.75 R2 values. 

Basuki et al. 

(2013) 

Landsat Georgia forest 

land 

Vegetation indices & 

multiple regression 

analyses were used to 

develop AGB estimation 

models. 

Hardwoods biomass was 

estimated with R2 of 0.52, 0.30 

for softwoods & 0.66 for mixed 

forests. 

Min et al. 

(2009b) 

Landsat 

(ETM+) 

Kampong Thom 

Province in 

central 

Cambodia 

Object-based approach 

was used. 

ABG estimates ranges between 

0.67 and 0.76 R2. 

Kajisa et al. 

(2009) 

SPOT-5 

HRG 

imagery  

Sun Yat-sen, 

Nanjing, China 

 

Gray Level Co-

occurrence Matrix was 

applied. 

The results showed that ABG 

was poorly correlated with most 

textures. 

Li et al. 

(2008) 

Landsat 

TM 

imagery 

Western 

Newfoundland, 

Canada 

Biomass from Cluster 

Labeling based on 

Structure and Type 

(BioCLUST), was used. 

BioCLUST offered plausible 

results. 

Luther et al. 

(2006) 

Table 6: Summarized spectral bands used for biomass estimation in different countries. 

Satellite Spectral Bands (SB) References 

Landsat 8 B, G, R, NIR, SWIR1 Hall et al. (2006) Labrecque et al. (2006), Lu (2007), Ji et al. 

(2012), Dube and Mutanga (2015), Gizachew et al. (2016), 

Risdiyanto and Fakhrul (2017), Li et al. (2019), Qiu et al. 

(2019), Taddese et al. (2022), 

Sentine 2 B, G, R, RE, NIR, 

SWIR1 

Lu (2007), Gizachew et al. (2016), López-Serrano et al. (2016), 

Risdiyanto and Fakhrul (2017), Li et al. (2019), Qiu et al. 

(2019), Taddese et al. (2022) 

Planet Scope B, G, R, NIR Adam and Mutanga (2012), Sousa et al. (2015), Taddese et al. 

(2022) 

High resolution 

(QuickBird) 

Four bands (B1, B2, 

B3, and Infrared) 

Sousa et al. (2015), Sousa et al. (2017) 

Where; MSAVI: Modified Soil Adjusted Vegetation 

Index, NDVI: Vegetation Index, SR: Simple Ration, 

NDMI: Normalized Difference Moisture Index, 

RENDV: Red Edge Normalized Difference Index, VI: 

Vegetation Index, DVI: Difference Vegetation Index, 

ExGI: Excess Green Index, GLI: Green Leaf Index, 

EVI: Enhanced Vegetation Index, SAVI: Soil Adjusted 

Vegetation Index, NDGI: Normalized Difference 

Green Index, ARVI: Atmospheric Resistance 

Vegetation Index and SRRE:  Red Edge Sample Ratio. 

Study findings by Otukei et al. (2015), Gizachew 

et al. (2016), Næsset et al. (2016), and Taddese et 

al. (2020) assessed the use of RS for biomass 

estimation in the region of east Africa. The 

contribution of remotely sensed (RS) data to 

increasing the accuracy of AGB estimation in the 

Afromontane forests of south-central Ethiopia 

was evaluated by Taddese et al. (2020). They 

observed that employing RS data for AGB 

estimate increased the accuracy of AGB 

estimation. They used several SBs, SIs (Table 3), 

and texture elements for AGB estimation. The 

models Landsat-8, Sentinel 2, and Planet Scope, 

which used shortwave infrared, green band , and 

shortwave infrared band reflectance as their 

predictor variable, respectively, had estimation 
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efficiencies of 1.40, 1.37, and 1.68 (Figure 5). 

This indicated the potential of the different 

satellite images for estimating and improving 

forest above-ground biomass. 

Table 7: Summarized spectral index’s for biomass estimation 

SI Expression/formulas References 

SR NIR/R Jordan (1969), Günlü et al. (2014), Macedo et al. (2018), Das 

and Singh (2022), 

NDVI (NIR−R)/(NIR+R) Rouse et al. (1974), Huete et al (1999), Gizachew et al. (2016), 

Das and Singh (2022), 

VI G/R Adamsen et al. (1999), Günlü et al. (2014), Taddese et al. (2022) 

DVI NIR−R Richardson and Wiegand (1977), Das and Singh (2022) 

ExGI 2×G−(B+R) Sonnentag et al. (2012), Taddese et al. (2022) 

GLI (G− R)+(G−B)/2×G+ R+B Louhaichi et al. (2001), Taddese et al. (2022) 

EVI 2.5×(NIR−R)/(NIR+6×R−7.5×B+

1) 

Liu and Huete (1995), Gizachew et al. (2016) 

SAVI (NIR−R)/(NIR+R+0.5)×(1.5) Huete (1988), Das and Singh (2022), 

MSA

VI 

2×NIR+1−(

√(2(𝑁𝐼𝑅) + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)/

2 

Qi et al. (1994), Das and Singh (2022) 

NDMI (NIR−SWIR1)/(NIR+SWIR1) Gao (1996), Gizachew et al. (2016), Taddese et al. (2022) 

NDGI (G− R)/(G +R) Motohka et al. (2010), Taddese et al. (2022) 

ARVI (NIR −(2×R−B))/(NIR+(2×R−B)) Kaufman and Tanre (1992), Qiu et al. (2019), Taddese et al. 

(2022) 

SRRE NIR/RE Torino et al. (2014), Rajah et al. (2019), Baloloy et al. (2018) 

REND

VI 

(NIR−RE)/(NIR+RE) Gitelson and Merzlyak (1994), Imran et al. (2020) 

 

Figure 5: Visual representation of a portion of the predicted AGB using the selected models. 

 
Note:  Selected models: L8, S2, PS and false-color composite, respectively from A to D. 

Source, Taddess et al. (2020) 

Disease and Insect Outbreak Detection 

Many years ago, it was thought that remote 

sensing could be used to identify damage to 

forests caused by insects and diseases (Woodcock 

et al., 2008). However, it has received 

considerable attention only recently, in the late 
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1990s, for managing emerging outbreaks. The two 

primary causes are as follows: 1) 

internationalization, which has led to the global 

spread of pests and pathogens, has caused an 

enormous rise in the incidence and severity of 

forest diseases during the past 20 years; and 2) the 

impact of climate change (Boyd et al., 2013). This 

emphasizes two things: (1) the obtained spectrum 

data have expanded considerably within the same 

period, primarily due to the abatement of data 

collecting costs and (2) the need to understand 

illness development in order to apply effective 

mitigation techniques. For instance, it is now easy 

to methodically evaluate the consequences of 

individual illnesses or insects in particular areas of 

interest thanks to the release of more than 40 years 

of the Landsat archive (Woodcock et al., 2008). A 

number of additional investigations were 

conducted in Australia, China, and South Africa, 

but the majority of the research hotspot were 

located in North America, which included the 

United States, Canada, and Europe (Germany, 

Norway, Spain, Sweden, and the United 

Kingdom) (Chen & Meentemeyer, 2017). Table 8 

shows remote sensing-based detection of forest 

diseases in different countries. 

Table 8: A summary of remote sensing-based forest disease detection. 

Disease (pathogen) 

name  

Species that 

host the 

pathogen 

Study 

area 

Sensor  and 

Wavelengths used 

Approach 

adopted 

References  

Sphaeropsis blight 

(Sphaeropsis 

sapinea, F) 

Pinus radiata NSW, 

Australia 

MS-I (12 bands, 

450−850 nm) 

SS + Imaging Coops et al. 

(2004) 

Pinus radiata NSW, 

Australia 

HS (350−1100 nm) VSI, SS, 

LIBERTY 

Coops and 

Stone (2005) 

Pinus radiata NSW, 

Australia 

MS-I (4 bands, 

680−850 nm) 

Imaging Goodwin et 

al. (2005) 

Pinus radiata NSW, 

Australia 

MS-I (4 bands, 

680−850 nm) 

VSI + Imaging Coops et al. 

(2006) 

Pinus radiata NSW, 

Australia 

MS-I (4 bands, 

680−850 nm) 

VI + Imaging Sims et al. 

(2007) 

Pine wilt disease 

(Bursaphelenchus 

xylophilus, N) 

Pinus 

massoniana 

China HS (350–1100 nm) VSI, SS Ju et al. 

(2014) 

Pinus thunbergii South 

Korea 

HS (350–2500 nm) VSI, SS Kim et al. 

(2018) 

Pinus pinaster Portugal MS-I (5 bands, 

475−840 nm), HS-

I (380−1100 nm) 

VSI + Imaging Iordache et 

al. (2020) 

Pinus spp. – – – Wu et al. 

(2020) 

Pinus 

massoniana 

China HS (350−1100 nm) SS, PLSR Zhang et al. 

(2020b) 

Red band needle 

blight (Dothistroma 

septosporum, F) 

Pinus radiata NSW, 

Australia 

MS-I (10 bands, 

450−850 nm) 

VSI + Imaging Coops et al. 

(2003) 

Pinus radiata NSW, 

Australia 

HS (350−2500 nm) VSI, SS Stone et al. 

(2003) 

Pinus 

contorta, Pinus 

sylvestris 

Scotland, 

UK 

HS-I 

(450−980 nm), HS 

(350−2500 nm) 

VSI, 

SS + Imaging 

Smigaj et al. 

(2019) 

Blister rust 

(Cronartium ribicola, 

F) 

Pinus albicaulis MT, WY, 

USA 

HS-I 

(450−2500 nm) 

SS + Imaging Hatala et al. 

(2010) 

Pine pitch canker 

(Fusarium 

circinatum, F) 

Pinus radiata South 

Africa 

MS-I (4 bands, 

447−874 nm) 

VSI + Imaging Poona and 

Ismail 

(2013) 

Laminated root rot 

(Phellinus weirii, F) 

Pseudotsuga 

menziesii 

Canada MS-I (8 bands, 

438−861 nm) 

VSI + Imaging Leckie et al. 

(2004) 
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Forest Fires Detection 

Over the past few years, the environment has been 

significantly impacted by both human-caused 

forces and climate change. Among these events 

are heat waves, droughts, dust storms, hurricanes, 

floods, and wildfires. Tanase et al. (2018) claim 

that wildfires cause major harm to infrastructure, 

injuries, and fatalities in addition to having a 

detrimental effect on local and global ecosystems. 

For these reasons, it is critical to detect fires and 

accurately monitor the type, size, and impact of 

disturbances over wide areas. Strong attempts 

have been undertaken through early fire detection 

or fire risk mapping to reduce or prevent such 

repercussions (Pradhan et al., 2007). 

Traditionally, forest fires were found by eye from 

fire lookout towers and with only crude 

instruments like the Osborne fire finder (Kresek, 

2007). Nevertheless, this method is ineffective 

since it is disposed to to weariness and human 

error. 

New methods for identifying and keeping an eye 

on forest fires have been made possible by recent 

advancements. Theses includes in computer 

vision, machine learning, and remote sensing 

technologies (Barmpoutis et al., 2020). Three 

commonly used systems can detect or monitor 

active fire or smoke occurrences, depending on 

the acquisition level. Barmpoutis et al. (2020) 

have investigated and compared these three 

systems as terrestrial, aerial, and satellite (Figure 

6). When it comes to precision and reaction times 

to wildfire emergencies systems such as terrestrial 

systems are typically more effective. Terrain 

systems are usually more successful in terms of 

precision and response times to wildfire crises. 

Furthermore, these systems offers high spatial 

resolution contingent on viewing angle and 

distance, as well as camera resolution; 

nevertheless, their coverage is comparatively 

narrower than that of the other two due to fixed 

camera placements and possible other constraints 

(Barmpoutis et al., 2020). The recent rapid 

development of UAV technology has drawn a lot 

of attention to aerial-based systems. Even in areas 

that are unreachable or deemed too hazardous for 

firefighting teams, these technologies offer a 

wider and more accurate view of the fire. Because 

of their extensive coverage, the third category 

Earth observation satellite systems has proven 

effective in detecting wildfires. 

Figure 6: Multispectral imaging systems with a broad use for early fire detection 

 
Source Barmpoutis et al. (2020) 
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The daylight fire observations from the 2014 King 

fire in California, as reported by Schroedera et al. 

(2016), were verified by same-day fire detections 

from 1-km Terra MODIS and Landsat 8–30 m 

(Figure 7). Both the position and size of the fire 

fronts were well matched among the various 

goods. The visualization of the burning front, 

however, was substantially more comprehensive 

thanks to Landsat-8 fire pixels, which showed 

discrete islands of heat inside the blaze's boundary 

as well as areas of ongoing activity on both the 

east and west sides. 

Figure 7: Multi-sensor imaging of the King fire in California/U.S. on 19 September 2014 

 
Source:  Schroedera et al. (2016) 

Detecting Forest Disturbance 

Ecosystems in forests are frequently disturbed. 

Many forest ecosystems experience disturbance 

on a regular basis due to factors including wind, 

ice storms, disease, insect infestation, pollution, or 

climate change (Torbick & Ducey, 2010). 

Therefore, in order for landowners to react 

efficiently and effectively, fast and precise 

assessment of incidents of disturbance is essential. 

Assessing the degree of perturbation (number of 

lost or damaged trees) throughout the 

environment is crucial for economic, policy, and 

large-scale management decisions. Since many of 

these disturbances only cause minor harm to forest 

structures, it can be difficult to identify and 

measure them with traditional optical remote 

sensing methods.  

Nevertheless, when paired with optical images, 

modern satellite remote sensing technologies such 

as SAR and LiDAR offer the ability to better 

recognize perturbations and measure their impact 

on the environment than when used individually. 

In order to create and assess a prototype functional 

image evaluation system, investigators from the 

Northeastern States Research Cooperative 

(NSRC), Torbick and Ducey (2010), integrated 

remotely sensed imagery (MODIS) with field-

collected forest measurements from sites in New 

Hampshire and Maine. The outcome showed that 

it is both practical and economical to monitor 

forest disturbances while integrating remote 

sensing with MODIS. 

Canopy Height Change detection using RS 

The responsiveness of data obtained from 

penetrative detectors, for example SAR and 

LiDAR, to forest structural features, including 

volume, tree height, and AGB, as well as canopy 

height recognition, is great. LiDAR is widely 

employed in the forestry industry for commercial 

purposes in order to assess forest resources and 

minimize fieldwork required for field 

surveysAccording to Castillo et al. (2012), the 

canopy height calculated by LiDAR has a 1.34 m 

root mean square error, indicating high accuracy. 
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In their study, Anderson et al. (2014) employed 

repeat LiDAR to assess structural alterations in 

forests that had been selectively cleared in the 

Western Brazilian Amazon. They discovered that 

during the approximately 1.5-year period of 

picture acquisition, 4.1% of the tall canopy 

(>30m) had been lost.  

In a similar vein, Englhart et al. (2013) measured 

canopy height and AGB patterns in undamaged, 

deliberately logged, and burnt forests using multi-

temporal LiDAR collected over tropical wetland 

forest in Kalimantan. The results demonstrate 

how the forest settings vary in terms of AGB and 

canopy height (Figure 8). In the deliberately 

logged forest, overall and mean canopy height 

rose by 0.5 and 1 m, correspondingly, although the 

typical loss was 55 Mg ha−1 within 30 m and 42 

Mg ha−1 within 50 m of identified cutting roads. 

In an untouched forest, gains of 20 Mg ha−1 AGB 

and 2.3 m of canopy height were seen each year 

during the same period (4 years). This indicates 

how LiDAR is very important in getting forest 

science. However, the challenge is Airborne 

LiDAR is currently not freely available and 

reasonable for governments to obtain a continuous 

data (Mitchell et al., 2017).

Figure 8: AGB fluctuations and the height of canopy in tropical wetland forests are measured 

using multi-temporal LiDAR. 

 
Englhart et al., 2013. 

 

Remote Sensing Technologies for Forest 

Inventories Enhancement 

Achieving an acceptable compromise between 

managing the forest environment sustainably and 

meeting the needs of a growing human population 

is seen as sustainable forest management 

(MacDicken et al., 2015). The demands for 

managing forests and assessment are changing 

quickly within the framework of an intricate mix 

of socioeconomic, environmental, and social 

policy goals. Technology for remote sensing have 

the capacity to offer data to help meet these 

growing information needs and to facilitate 

further growth. For example, ALS (active remote 

sensing technology) is useful for characterizing 

hierarchical tree structure since it analyzes the 

three-dimensional arrangement of plants within 

the canopy of the forest (Wehr & Lohr, 1999). The 

way LiDAR devices capture the energy coming 

back to the sensor determines their classification. 
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Instantaneous return technologies collect one or 

more distinct responses for every pulse of laser 

that is generated; as sensor technology has 

advanced, the maximum quantity of instantaneous 

returns that may be collected for every generated 

pulse has grown (Lim et al., 2003). On the other 

hand, a full-waveform system will capture the 

energy that is returning as a single, continuous 

waveform (Lefsky et al., 2002). LiDAR measures 

the three-dimensional positions of targets, 

including trees, using a near-infrared light source 

and sensor (Lim et al., 2003). Goodwin et al. 

(2006) state that ALS data are typically gathered 

at altitudes between 500 and 3000 meters for 

forest surveys. Such information are widely used 

in the estimation of forestry enumeration 

characteristics and the development of 

unimproved digital terrain models (DTM) 

(Hyyppa et al., 2008). 

Growing stock is determined using species-

specific biomass and volume formulae as given 

the same age and location factors, various kinds of 

trees are going to have various sizes. In order to 

determine the volume of each particular tree, 

models that use height and DBH are frequently 

made to be species-specific (e.g., c; Joanne et al., 

2016). As per Joanne et al. (2016), there exists a 

possibility to classify tree species using ALS data; 

however, the existing studies indicate that these 

methods require significantly more expertise than 

those that utilize an area-based approach (ABA) 

for estimating basal area or stand volume. 

Forest-Wildlife Management 

Mapping and tracking ecological diversity also 

benefit from the use of data from satellites. A 

model to direct the use of RS data in the mapping 

and tracking of biodiversity was developed in a 

research by Stoms and Estes (1993). 

Subsequently, this area of study has been the 

subject of numerous investigations (Tuomisto et 

al., 1995; Nagendra, 2001; Kerr and Ostrovsky, 

2003; Wang et al., 2009; Wang et al., 2010). In 

order to analyze grizzly bear habitat, Franklin et 

al. (2010) utilized a combined decision- trees 

method to depict land cover using remotely sensed 

data. 

CONCLUSION 

The importance of forests to the climate and 

human life has been recognized on a global scale. 

Even so, there are significant alterations that occur 

in forests. Aside from natural causes, human-

induced sources are thought to be the most 

significant factor in forest modification. 

Numerous data sources that are accessible via 

distinct remote sensing technologies—such as air-

borne, space-borne, and terrestrial remote sensing 

sensors—have emerged as vital assets of 

information for studies regarding the 

spatiotemporal patterns of forests, owing to the 

enormous challenges related to the labor, 

transportation, and chronological consistency of 

field-based surveys for forest management and 

study. 

The application of imagery from satellites to help 

comprehend forest characteristics is a long-

standing and quickly developing phenomena. 

With the initial commercial earth-observing 

satellite launched in 1972, remote sensing by 

satellite has been able to offer ever-more-

advanced data on the framework, control, 

management, and evaluation of forests. 

Monitoring and comprehending the world's 

forests is crucial given the present state of 

worldwide threat of climate change, loss of 

biodiversity, deterioration of the environment, 

and rising demand for wood products. 

Technology related to remote sensing has been 

crucial in this instance. The purpose of the present 

review was to examine the application and role of 

remote sensing in forestry. Information were 

gathered from publications, written papers, 

internet resources, and professional experience. 

As seen from the review, the use of remote 

sensing essential because it provides the synoptic, 

timely information that is only possible with 

satellite imagery alongside the additional facts 

required to assist local, national, and international 

decision-makers in critical decisions. The 

assessment highlights the crucial role that remote 

sensing technologies plays in managing forests. 

Current knowledge on disturbance, fire, shifting 

forest cover, and managing forest wildlife is 

helpful. 
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