The Critical Role and Application of Microbes towards Sustainable Development and Human Wellbeing

  • Fredrick Ojija Mbeya University of Science and Technology
  • Marco Mng’ong’o Mbeya University of Science and Technology
  • Farida Mayowela Mbeya University of Science and Technology
Keywords: Microbes, Beneficial Roles, Bioremediation, Ecosystem Wellbeing, Global South
Share Article:

Abstract

Microorganisms (also called microbes) make up a large portion (1 trillion (1012) species or 60%) of the Earth’s living as they are abundant and diversified in nature. Though they are vital for ecosystems and human welfare, their roles are often ignored or underrated. While most studies are underway in the global north to figure out how to utilise microbes in agriculture, industries, medical, space mission, and many other sectors, this kind of research is limited in the global south, particularly in Sub–Saharan Africa. Also, there has been scarce knowledge regarding the importance of microorganisms. The present paper aims to highlight and discuss current knowledge on the roles and/ or applications of microorganisms and their contribution toward sustainable development and human welfare in the global south. It also aims to help the scientists and/ or researchers in sub–Saharan Africa comprehends the use of microbial communities. We reviewed 84 published original research and review articles to explore microbial roles and their applications. We establish that many microbes play critical roles, which include but are not limited to ecological, pharmaceuticals, food source, biofuel or energy production, drugs or medicine development, nitrogen and carbon fixation, biocontrol agents, bioremediation, decomposition of organic matters, and soil formation. Since microbes potentially ensure the functioning of the Earth’s ecosystem and support human welfare, research on this subject should be prioritised in the global south to improve human development and well-being.

Downloads

Download data is not yet available.

References

Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers. Microbial Ecology, 58, 921–929.

Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36–49. https://doi.org/10.1016/j.micres.2019.02.001

Agrillo, B., Mirino, S., Tatè, R., Gratino, L., Gogliettino, M., Cocca, E., Tabli, N., Nabti, E., & Palmieri, G. (2019). An alternative biocontrol agent of soil-borne phytopathogens: A new antifungal compound produced by a plant growth promoting bacterium isolated from North Algeria. Microbiological Research, 221, 60–69. https://doi.org/10.1016/j.micres.2019.02.004

Ahemad, M., & Khan, M.S. (2012). Effect of fungicides on plant growth promoting activities of phosphate solubilising Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere, 86, 945–950. https://doi.org/10.1016/j.chemosphere.2011.11.013

Ahmad, M., Zahir, Z. A., Asghar, H. N., & Asghar, M. (2011). Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol., 57, 578–589. https://doi.org/10.1139/w11-044

Akinsemolu, A. A. (2018). The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182, 139–155. https://doi.org/10.1016/j.jclepro.2018.02.081

Albert, B., Casamayor, E., & Fierer, N. (2014). The microbial contribution to macroecology. Frontiers in Microbiology, 5, 1–8. https://doi.org/doi: 10.3389/fmicb.2014.00203

Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S., Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213, 29–37. https://doi.org/10.1016/j.micres.2018.04.008

Allison, S. D. (2005). Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments: Constraints on enzymatic decomposition. Ecology Letters, 8, 626–635. https://doi.org/10.1111/j.1461-0248.2005.00756.x

Barantal, S., Schimann, H., Fromin, N., & Hättenschwiler, S. (2012). Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest. Ecosystems, 15, 1039–1052. https://doi.org/10.1007/s10021-012-9564-9

Bardgett, R. D., Freeman, C., & Ostle, N. J., 2008. Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal 2, 805–814. https://doi.org/10.1038/ismej.2008.58

Bargaz, A., Elhaissoufi, W., Khourchi, S., Benmrid, B., Borden, K. A., & Rchiad, Z. (2021). Benefits of phosphate solubilising bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 252, 126842. https://doi.org/10.1016/j.micres.2021.126842

Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18. https://doi.org/10.1007/s00253-009-2092-7

Bharti, N., Barnawal, D., Awasthi, A., Yadav, A., & Kalra, A. (2014). Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum t, 36, 45–60. https://doi.org/10.1007/s11738-013-1385-8

Burgos, F. A., Ray, C.L., & Arias, C. R. (2018). Bacterial diversity and community structure of the intestinal microbiome of Channel Catfish (Ictalurus punctatus) during ontogenesis. Systematic and Applied Microbiology, 41, 494–505. https://doi.org/10.1016/j.syapm.2018.04.006

Capinera, J. L. (2009). Use of Microbes for Control and Eradication of Invasive Arthropods Hajek, E. A. , Glare, T. R. , and O’Callaghan, M. O. (Eds.) 2008. Use of Microbes for Control and Eradication of Invasive Arthropods (Progress in Biological Control vol. 6). Florida Entomologist, 92, 524–525. https://doi.org/10.1653/024.092.0322

Chatterjee, P., Samaddar, S., Anandham, R., Kang, Y., Kim, K., Selvakumar, G., & Sa, T. (2017). Beneficial Soil Bacterium Pseudomonas frederiksbergensis OS261 Augments Salt Tolerance and Promotes Red Pepper Plant Growth. Frontiers in Plant Science, 8, 705. https://doi.org/10.3389/fpls.2017.00705

Chithrashree, U. A. C., Chandra Nayaka, S., Reddy, M. S., & Srinivas, C. (2011). Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 59, 114–122. https://doi.org/10.1016/j.biocontrol.2011.06.010

Cleveland, C. C., Reed, S. C., & Townsend, A. R., 2006. Nutrient regulation of organic matter decomposition in a Tropical rain forest. Ecology, 87, 492–503. https://doi.org/10.1890/05-0525

Cunha, C. S., Veloso, C. M., Marcondes, M. I., Mantovani, H. C., Tomich, T. R., Pereira, L. G. R., Ferreira, M. F. L., Dill-McFarland, K. A., & Suen, G. (2017). Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate. Systematic and Applied Microbiology, 40, 492–499. https://doi.org/10.1016/j.syapm.2017.07.008

Curtis, T. P., Head, I. M., Lunn, M., Woodcock, S., Schloss, P. D., & Sloan, W. T. (2006). What is the extent of prokaryotic diversity? Philosophical Transactions of the Royal Society B, 361, 2023–2037. https://doi.org/10.1098/rstb.2006.1921

Dalmasso, M., Hill, C., & Ross, R. P. (2014). Exploiting gut bacteriophages for human health. Trends in Microbiology, 22, 399–405. https://doi.org/10.1016/j.tim.2014.02.010

de Andrade, F. M., de Assis Pereira, T., Souza, T. P., Guimarães, P. H. S., Martins, A. D., Schwan, R. F., Pasqual, M., & Dória, J. (2019). Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological Research, 223–225, 120–128. https://doi.org/10.1016/j.micres.2019.04.005

El-Borollosy, A. M., & Oraby, M. M. (2012). Induced systemic resistance against Cucumber mosaic cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Annals of Agricultural Sciences, 57, 91–97. https://doi.org/10.1016/j.aoas.2012.08.001

Falkenmark, M. (2013). Growing water scarcity in agriculture: future challenge to global water security. Philosophical Transactions of the Royal Society A. 371, 20120410. https://doi.org/10.1098/rsta.2012.0410

Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034–1039. https://doi.org/10.1126/science.1153213

Fauzi, M. T. (2009). Biocontrol Ability of Puccinia abrupta var. partheniicola on Different Growth Stages of Parthenium Weed (Parthenium hysterophorus L.). HAYATI Journal of Biosciences 16, 83–87. https://doi.org/10.4308/hjb.16.3.83

Fierer, N., Allen, A. S., Schimel, J. P., & Holden, P. A. (2003). Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons: Controls on microbial respiration. Global Change Biology, 9, 1322–1332. https://doi.org/10.1046/j.1365-2486.2003.00663.x

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459, 193–199. https://doi.org/10.1038/nature08058

Ghazalibiglar, H., Hampton, J. G., van Zijll de Jong, E., & Holyoake, A. (2016). Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biological Control, 92, 195–201. https://doi.org/10.1016/j.biocontrol.2015.10.014

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalisation of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. https://doi.org/10.1016/j.micres.2017.08.016

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914. https://doi.org/10.1139/m97-131

Harada, L. K., Silva, E. C., Campos, W. F., Del Fiol, F. S., Vila, M., Dąbrowska, K., Krylov, V. N., & Balcão, V. M., 2018. Biotechnological applications of bacteriophages: State of the art. Microbiological Research, 212–213, 38–58. https://doi.org/10.1016/j.micres.2018.04.007

Heeg, K., Pohl, M., Sontag, M., Mumme, J., Klocke, M., & Nettmann, E. (2014). Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Systematic and Applied Microbiology, 37, 590–600. https://doi.org/10.1016/j.syapm.2014.10.002

Hussain, A., Rather, M. A., Dar, M. S., Dangroo, N. A., Aga, M. A., Qayum, A., Shah, A. M., Ahmad, Z., Dar, M. J., & Hassan, Q. P. (2017). Streptomyces puniceusstrain AS13. Production, characterisation and evaluation of bioactive metabolites: A new face of dinactin as an antitumor antibiotic. Microbiological Research, 207, 196–202. https://doi.org/ 10.1016/j.micres.2017.12.004

Javed, M. R., Noman, M., Shahid, M., Ahmed, T., Khurshid, M., Rashid, M. H., Ismail, M., Sadaf, M., & Khan, F. (2019). Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiological Research, 219, 1–11. https://doi.org/10.1016/j.micres.2018.10.010

Juretschko, S., Loy, A., Lehner, A., & Wagner, M. (2002). The Microbial Community Composition of a Nitrifying-Denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analysed by the Full-Cycle rRNA Approach. Systematic & Applied Microbiology, 25, 84–99. https://doi.org/10.1078/0723-2020-00093

Kelaniyangoda, D., & Ekanayake, H. (2010). Puccinia melampodii Diet. and Holow. as a Biological Control Agent of Parthenium hysterophorus. Journal of Food & Agriculture 1, 13–19. https://doi.org/10.4038/jfa.v1i1.1835

Konopka, A. (2009). What is microbial community ecology? ISME Journal, 3, 1223–1230. https://doi.org/10.1038/ismej.2009.88

Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., & Richter, A. (2014). Fungal and bacterial utilisation of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 87, 142–152. https://doi.org/10.1111/1574-6941.12214

Kowalski, K. P., Bacon, C., Bickford, W., Braun, H., Clay, K., Leduc-Lapierre, M., Lillard, E., McCormick, M. K., Nelson, E., Torres, M., White, J., & Wilcox, D. A. (2015). Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Frontiers in. Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00095

Kumar, A., & Verma, J. P. (2018). Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiological Research, 207, 41– 52. https://doi.org/10.1016/j.micres.2017.11.004

Kumar, P., Kundu, A., Kumar, M., Solanki, R., & Kapur, M. K. (2019). Exploitation of potential bioactive compounds from two soil derived actinomycetes, Streptomyces sp. strain 196 and RI.24. Microbiological Research, 229, 126312. https://doi.org/10.1016/j.micres.2019.126312

Kumar, S. (2009). Biological control of Parthenium in India: status and prospects. Indian Journal of Weed Science 41, 1–18.

Lee, B. D., Dutta, S., Ryu, H., Yoo, S. J., Suh, D. S., & Park, K. (2015). Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research 39, 213–220. https://doi.org/10.1016/j.jgr.2014.12.002

Liu, Y., Liu, J., Yao, P., Ge, T., Qiao, Y., Zhao, M., & Zhang, X. H. (2018). Distribution patterns of ammonia-oxidising archaea and bacteria in sediments of the eastern China marginal seas. Systematic and Applied Microbiology, 41, 658–668. https://doi.org/10.1016/j.syapm.2018.08.008

Lobo, C. B., Juárez Tomás, M. S., Viruel, E., Ferrero, M. A., & Lucca, M. E. (2019). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12– 25. https://doi.org/10.1016/j.micres.2018.10.012

Logue, J. B., Findlay, S. E. G., & Comte, J. (2015). Editorial: Microbial Responses to Environmental Changes. Frontiers in Microbiology., 6. https://doi.org/10.3389/fmicb.2015.01364

Loreau, M. (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91, 3–17. https://doi.org/10.1034/j.1600-0706.2000.910101.x

Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchio, D., & Borin, S. (2013). Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils. BioMed Research International, 1–13. https://doi.org/10.1155/2013/248078

Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., Zocchi, G., & Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signaling and Behavior, 8, e26741. https://doi.org/10.4161/psb.26741

Marijani, E. (2022). Prevalence and Antimicrobial Resistance of Bacteria Isolated from Marine and Freshwater Fish in Tanzania. International Journal of Microbiology, 1–8. https://doi.org/10.1155/2022/4652326

Masmoudi, F., Abdelmalek, N., Tounsi, S., Dunlap, C. A., & Trigui, M. (2019). Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiological Research, 229, https://doi.org/10.1016/j.micres.2019.126331

Mastan, A., Rane, D., Dastager, S. G., & Vivek Babu, C. S. (2019). Development of low-cost plant probiotic formulations of functional endophytes for sustainable cultivation of Coleus forskohlii. Microbiological Research, 227, 126310. https://doi.org/10.1016/j.micres.2019.126310

Mei, C., & Flinn, B. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 4, 81–95. https://doi.org/10.2174/187220810790069523

Méndez-Bravo, A., Cortazar-Murillo, E. M., Guevara-Avendaño, E., Ceballos-Luna, O., Rodríguez-Haas, B., Kiel-Martínez, A. L., Hernández-Cristóbal, O., Guerrero-Analco, J. A., & Reverchon, F. (2018). Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS ONE, 13, e0194665. https://doi.org/10.1371/journal.pone.0194665

Mendoza-Hernández, J. C., Vázquez-Delgado, O. R., Castillo-Morales, M., Varela-Caselis, J. L., Santamaría-Juárez, J. D., Olivares-Xometl, O., Arriola Morales, J., & Pérez-Osorio, G. (2019). Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria. Microbiological Research, 228, 126308. https://doi.org/10.1016/j.micres.2019.126308

Miliute, I., Buzaite, O., Baniulis, D., & Stanys, V. (2015). Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture, 102, 465–478. https://doi.org/10.13080/z-a.2015.102.060

Ojija, F., Arnold, S. E. J., & Treydte, A. C. (2021a). Plant competition as an ecosystem-based management tool for suppressing Parthenium hysterophorus in rangelands. Rangelands S0190052820301218. https://doi.org/10.1016/j.rala.2020.12.004

Ojija, F., Manyanza, N. M., & Mataba, G. R. (2021b). Distribution, habitat and conservation status of critically endangered aloes in Tanzania. South African Journal of Botany, 1–7. https://doi.org/10.1016/j.sajb.2021.08.024

Ojija, F., & Ngimba, C. (2021). Suppressive abilities of legume fodder plants against the invasive weed Parthenium hysterophorus (Asteraceae). Environmental and Sustainability Indictors, 1–22. https://doi.org/10.1016/j.indic.2021.100111

Pajares, S., Bohannan, B. J. M., & Souza, V. (2016). Editorial: The role of microbial communities in tropical ecosystems. Frontiers in Microbiology. 7. https://doi.org/10.3389/fmicb.2016.01805

Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M., & Park, K. (2015). Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochemical and Biophysical Research Communications, 461, 361–365. https://doi.org/10.1016/j.bbrc.2015.04.039

Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789– 799. https://doi.org/10.1038/nrmicro3109

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183, 26–41. https://doi.org/10.1016/j.micres.2015.11.007

Reed, H. E., & Martiny, J. B. H. (2007). Testing the functional significance of microbial composition in natural communities: Functional significance of microbial composition. FEMS Microbiology Ecology, 62, 161–170. https://doi.org/10.1111/j.1574-6941.2007.00386.x

Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial Endophytes and Their Interactions with Hosts. MPMI, 19, 827–837. https://doi.org/10.1094/MPMI-19-0827

Sahu, O. (2019). Sustainable and clean treatment of industrial wastewater with microbial fuel cell. Results in Engineering, 4, 100053. https://doi.org/10.1016/j.rineng.2019.100053

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, Ma., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92– 99. https://doi.org/10.1016/j.micres.2015.11.008

Schulz, S., Brankatschk, R., Dümig, A., Kögel-Knabner, I., Schloter, M., & Zeyer, J. (2013). The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences, 10, 3983–3996. https://doi.org/10.5194/bg-10-3983-2013

Seastedt, T. R. (2015). Biological control of invasive plant species: a reassessment for the A nthropocene. New Phytologist, 205, 490–502. https://doi.org/10.1111/nph.13065

Shade, A., Peter, H., Allison, S. D., Baho, D.L., Berga, M., Bürgmann, H., Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., & Handelsman, J. (2012). Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology. 3. https://doi.org/10.3389/fmicb.2012.00417

Shahrtash, M., & Brown, S. P. (2021). A path forward: promoting microbial-based methods in the control of invasive plant species. Plants, 10, 943. https://doi.org/10.3390/plants10050943

Soldan, R., Mapelli, F., Crotti, E., Schnell, S., Daffonchio, D., Marasco, R., Fusi, M., Borin, S., & Cardinale, M. (2019). Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiological Research, 223–225, 33–43. https://doi.org/10.1016/j.micres.2019.03.008

Son, J. S., Sumayo, M., Hwang, Y. J., Kim, B. S., & Ghim, S. Y. (2014). Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Applied Soil Ecology, 73, 1–8. https://doi.org/10.1016/j.apsoil.2013.07.016

Strickland, M. S., Lauber, C., Fierer, N., & Bradford, M. A. (2009). Testing the functional significance of microbial community composition. Ecology, 90, 441–451. https://doi.org/10.1890/08-0296.1

Sturz, A. V., & Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15, 183–190. https://doi.org/10.1016/S0929-1393(00)00094-9

Tang, M. J., Zhu, Q., Zhang, F. M., Zhang, W., Yuan, J., Sun, K., Xu, F. J., & Dai, C. C. (2019). Enhanced nitrogen and phosphorus activation with an optimised bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiological Research, 221, 50–59. https://doi.org/10.1016/j.micres.2019.02.005

Tyc, O., Song, C., Dickschat, J. S., Vos, M., & Garbeva, P. (2017). The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends in Microbiology, 25, 280–292. https://doi.org/10.1016/j.tim.2016.12.002

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003

Wagner, M., Loy, A., Nogueira, R., Purkhold, U., & Lee, N. (2002). Microbial community composition and function in wastewater treatment plants. Antonie van Leeuwenhoek, 665–680.

Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328. https://doi.org/10.1016/j.micres.2019.126328

Yang, L., Liu, Y., Cao, X., Zhou, Z., Wang, S., Xiao, J., Song, C., & Zhou, Y. (2017). Community composition specificity and potential role of phosphorus solubilising bacteria attached on the different bloom-forming cyanobacteria. Microbiological Research, 205, 59–65. https://doi.org/10.1016/j.micres.2017.08.013

Published
8 August, 2022
How to Cite
Ojija, F., Mng’ong’o, M., & Mayowela, F. (2022). The Critical Role and Application of Microbes towards Sustainable Development and Human Wellbeing. East African Journal of Environment and Natural Resources, 5(1), 231-256. https://doi.org/10.37284/eajenr.5.1.780