Analysis of the Impact of Built Environment on Coastline Ecosystem Services and Values

  • Mkama Thomas Manyama University of Dar es Salaam
  • Cuthbert Leonard Nahonyo, PhD University of Dar es Salaam
  • Aloyce Shaban Hepelwa, PhD University of Dar es Salaam
Keywords: Dar es Salaam, Coastline, Service Value, Built Environment, Soil Erosion, Soil Fauna Dynamics, Carbon Stock

Abstract

The degradation of any ecosystem services (ES) and the benefits human being enjoy from nature freely involve multifaceted processes such as those in built environment. The ecological security and multiple functions of the coastal zone of Dar es Salaam is of paramount importance to the sustainability of its natural and anthropogenic systems. Therefore, permanent/temporary conversion of a piece of land for construction space provisions profoundly affects the functionality and connectedness of nature–anthropogenic ecosystem. This study quantified land use landcover changes from Landsat satellite imageries, then evaluated the changes using recognizable coefficients for ecosystem services values (ESV). Applying Geographical Information System (GIS) techniques, the impacts of built environment on ESV were analysed using land use landcover change (LULCC) transfer matrix, carbon stock dynamics and soil erosion influence on soil fauna. The results revealed expansive BE from 10.6 percent in 1995 to 22.8 percent in 2016. Loss of forest by 64.5 percent in the study period explained the declining total ESV by 56.1 percent and per capita recreation potential by 2.3 percent. Similarly, decreasing forest cover led to high carbon dioxide emission, notably, the 353.24 t CO2 ha-1 yr-1 in the period between 1995 and 2005. Furthermore, in 1995 bushland experienced high soil erosion while in 2016 built environment displayed a similar trend as the rest of the land use landcover (LULC) classes. From geospatial analysis, the southern area displayed significant vegetation cover change as compared to the built environment dominant in the northern section of Dar es Salaam coastline. Initiative to reducing built environment by 1 percent saves forest loss by 5.28 percent and carbon sequestration at a tune of 28.95 t CO2 ha-1 yr-1; hence improves ecological services values by 4.60 percent.

Downloads

Download data is not yet available.

References

Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma, 262, 101–111.

Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., De Moel, H., & Michel-Kerjan, E. O. (2014). Evaluating flood resilience strategies for coastal megacities. Science, 344(6183), 473–475.

Al-Bilbisi, H. (2019). Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan. Sustainability, 11(8), 2260.

Alavaisha, E., & Mangora, M. M. (2016). Carbon stocks in the small estuarine mangroves of Geza and Mtimbwani, Tanga, Tanzania. Int. J. For. Res.,, 2016.

Awad, M. M., Alawar, B., & Jbeily, R. (2019). A New Crop Spectral Signatures Database Interactive Tool (CSSIT). Data, 4(2), 77.

Baker, M. E., Schley, M. L., & Sexton, J. O. (2019). Impacts of Expanding Impervious Surface on Specific Conductance in Urbanizing Streams. Water Resour. Res.

Bidegain, I., Cerda, C., Catalán, E., Tironi, A., & López-Santiago, C. (2019). Social preferences for ecosystem services in a biodiversity hotspot in South America. PloS One, 14(4), e0215715.

Bindu, G., Rajan, P., Jishnu, E. S., & Joseph, K. A. (2018). Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt. J. Remote Sens. Sp. Sci.

Butt, T. E., Heywood, C. A., Paul, P., & Jones, K. G. (2014). Sustainability of and Obsolescence in the Built Environment: Two Contrary Notions. Sustain. J. Rec., 7(2), 116–122.

Carmona, M. (2019). Marketizing the governance of design: design review in England. J. Urban Des., 24(4), 523–555.

Cordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. T., & Bullock, J. M. (2015). Habitat fragmentation intensifies trade-offs between biodiversity and ecosystem services in a heathland ecosystem in southern England. PloS One, 10(6), e0130004.

Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., … Paruelo, J. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253.

de Sa, E., & Ardern, C. I. (2014). Associations between the built environment, total, recreational, and transit-related physical activity. BMC Public Health, 14(1), 693.

Diesing, M., Mitchell, P., & Stephens, D. (2016). Image-based seabed classification: what can we learn from terrestrial remote sensing? ICES J. Mar. Sci., 73(10), 2425–2441.

Ekoungoulou, R., Niu, S., Loumeto, J. J., Ifo, S. A., Bocko, Y. E., Mikieleko, F. E. K., … Liu, X. (2015). Evaluating the carbon stock in above-and below-ground biomass in a moist central African forest. Appl. Ecol. Environ. Sci, 3(2), 51–59.

Elmqvist, T., Setälä, H., Handel, S. N., Van Der Ploeg, S., Aronson, J., Blignaut, J. N., … De Groot, R. (2015). Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain., 14, 101–108.

Gashaw, T., Mebrat, W., Hagos, D., & Nigussie, A. (2014). Climate change adaptation and mitigation measures in Ethiopia. J Biol Agric Healthc, 2093–2225.

Gombe, K. E., Asanuma, I., & Park, J.-G. (2017). Quantification of Annual Urban Growth of Dar es Salaam Tanzania from Landsat Time Series Data. Adv. Remote Sens., 6(03), 175.

Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecol. Econ., 86, 235–245.

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr., 63, 101–112.

Hepelwa, A. S. (2013). Technical efficiency as a sustainability indicator in continuum of integrated natural resources management. Resour. Environ., 3(6), 194–203.

Hui, N., Grönroos, M., Roslund, M., Parajuli, A., Vari, H. K., Soininen, L., … Sinkkonen, A. (2019). Diverse Environmental Microbiota as a Tool to Augment Biodiversity in Urban Landscaping Materials. Front. Microbiol., 10, 536.

Hurley, P. T., & Emery, M. R. (2018). Locating provisioning ecosystem services in urban forests: Forageable woody species in New York City, USA. Landsc. Urban Plan., 170, 266–275.

Iqbal, M. F., & Khan, I. A. (2014). Spatiotemporal land use land cover change analysis and erosion risk mapping of Azad Jammu and Kashmir, Pakistan. Egypt. J. Remote Sens. Sp. Sci., 17(2), 209–229.

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front. Plant Sci., 8, 1617.

Kane, K., & Clark, W. A. V. (2019). Mapping the landscape of urban work: Home-based businesses and the built environment. Environ. Plan. A Econ. Sp., 51(2), 323–350.

Karki, S., Thandar, A. M., Uddin, K., Tun, S., Aye, W. M., Aryal, K., … Chettri, N. (2018). Impact of land use land cover change on ecosystem services: a comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res., 7(1), 25.

Keller, D. P., Lenton, A., Littleton, E. W., Oschlies, A., Scott, V., & Vaughan, N. E. (2018). The effects of carbon dioxide removal on the carbon cycle. Curr. Clim. Chang. reports, 4(3), 250–265.

Khademagha, P., Aries, M. B. C., Rosemann, A. L. P., & Van Loenen, E. J. (2016). Implementing non-image-forming effects of light in the built environment: A review on what we need. Build. Environ., 108, 263–272.

Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences, 9(4), 147.

Kukulska-Kozieł, A., Szylar, M., Cegielska, K., Noszczyk, T., Hernik, J., Gawroński, K., … Kovács, K. F. (2019). Towards three decades of spatial development transformation in two contrasting post-Soviet cities—Kraków and Budapest. Land Use Policy, 85, 328–339 (11 pages).

Lal, R. (2014). 1 Introduction 2 On-site and off-site effects of accelerated erosion. 2(3), 36–47. https://doi.org/10.1016/S2095-6339(15)30021-6

Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875–5895.

Ligonja, P. J., & Shrestha, R. P. (2015). Soil erosion assessment in kondoa eroded area in Tanzania using universal soil loss equation, geographic information systems and socioeconomic approach. L. Degrad. Dev., 26(4), 367–379.

Lobora, A. L., Nahonyo, C. L., Munishi, L. K., Caro, T., Foley, C., & Beale, C. M. (2017). Modelling habitat conversion in miombo woodlands: insights from Tanzania. Journal of Land Use Science, 12(5), 391–403.

Lu, D., Hetrick, S., & Moran, E. (2010). Land cover classification in a complex urban-rural landscape with QuickBird imagery. Photogramm. Eng. Remote Sens., 76(10), 1159–1168.

Malimbwi, R. E., & Zahabu, E. (2014). NAFORMA process and biophysical results. http://www.taccire.sua.ac.tz/xmlui/handle/123456789/450

Mannan, A., Liu, J., Zhongke, F., Khan, T. U., Saeed, S., Mukete, B., … Amir, M. (2019). Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv., 17, e00535.

Mkalawa, C. C. (2016). Analyzing dar es salaam urban change and its spatial pattern. Int. J. Urban Plan. Transp., 31(1), 1138–1150.

Mkalawa, C. C., & Haixiao, P. (2014). Dar es Salaam city temporal growth and its influence on transportation. Urban, Plan. Transp. Res., 2(1), 423–446.

Murdoch, W. W., Chu, F.-I., Stewart-Oaten, A., & Wilber, M. Q. (2018). Improving wellbeing and reducing future world population. PloS One, 13(9), e0202851.

Neugarten, R. A., Langhammer, P. F., Osipova, E., Bagstad, K. J., Bhagabati, N., Butchart, S. H. M., … Arrellano, C. G. (2018). Tools for measuring, modelling, and valuing ecosystem services: guidance for Key Biodiversity Areas, natural World Heritage Sites, and protected areas. IUCN.

Nyawade, S. O., Gachene, C. K. K., Karanja, N. N., Gitari, H. I., Schulte-Geldermann, E., & Parker, M. L. (2019). Controlling soil erosion in smallholder potato farming systems using legume intercrops. Geoderma Reg., 17, e00225.

Olson, K. R., Al-Kaisi, M., Lal, R., & Cihacek, L. (2016). Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv., 71(3), 61A-67A.

Orgiazzi, A., & Panagos, P. (2018). Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Glob. Ecol. Biogeogr., 27(10), 1155–1167.

Panagos, P., Van Liedekerke, M., Jones, A., & Montanarella, L. (2012). European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy, 29(2), 329–338.

Parris, K. M. (2016). Ecology of urban environments. John Wiley & Sons.

Parris, K. M., Amati, M., Bekessy, S. A., Dagenais, D., Fryd, O., Hahs, A. K., … Marshall, A. J. (2018). The seven lamps of planning for biodiversity in the city. Cities, 83, 44–53.

Pinho, F. F. S., & Lúcio, V. J. G. (2017). Rubble stone masonry walls in portugal: material properties, carbonation depth and mechanical characterization. Int. J. Archit. Herit., 11(5), 685–702 (17 pages).

Ran, L., Lu, X., Fang, N., & Yang, X. (2018). Effective soil erosion control represents a significant net carbon sequestration. Sci. Rep., 8(1), 12018.

Rieb, J. T., Chaplin-Kramer, R., Daily, G. C., Armsworth, P. R., Böhning-Gaese, K., Bonn, A., … Jackson, B. M. (2017). When, where, and how nature matters for ecosystem services: challenges for the next generation of ecosystem service models. BioScience, 67(9), 820–833.

Rizzo, M. (2014). The political economy of an urban megaproject: The bus rapid transit project in Tanzania. Afr. Aff. (Lond)., 114(455), 249–270.

Robinson, D. O., Gaertner, M., & Papageorgiou, C. (2011). Tanzania: Growth acceleration and increased public spending with macroeconomic stability. Yes Africa Can, 21.

Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci, 8(4), 611–622.

Sakijege, T., Lupala, J., & Sheuya, S. (2012). Flooding, flood risks and coping strategies in urban informal residential areas: The case of Keko Machungwa, Dar es Salaam, Tanzania. Jàmbá J. Disas. Risk Stud., 4(1), 1–10.

http://www.taccire.suanet.ac.tz/xmlui/handle/123456789/229?show=full

Schmidt, S., Manceur, A. M., & Seppelt, R. (2016). Uncertainty of monetary valued ecosystem services–value transfer functions for global mapping. PloS One, 11(3), e0148524.

Schreiber, D., Ermel, U. T., Figueiredo, J. A. S., & Zeni, A. (2016). Analysis of innovation and its environmental impacts on the chemical industry. BAR-Brazilian Adm. Rev., 13(1), 56–75.

Senga, H. O. (2014). Land cover change of Coastal Marine Ecosystems: A case study of Zanzibar. Sokoine University of Agriculture.

Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A meta-analysis of global urban land expansion. Environ. Plan. A Econ. Sp., 6(8), e23777.

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci., 109(40), 16083–16088.

Shahraki, A. A. (2017). Regional development assessment: Reflections of the problem-oriented urban planning. Sustain. cities Soc., 35, 224–231.

Shanshan, W., Baoyang, S., Chaodong, L., Zhanbin, L., & Bo, M. (2018). Runoff and Soil Erosion on Slope Cropland: A Review. J. Resour. Ecol., 9(5), 461–471.

Sharma, J., Prasad, R., Mishra, V. N., Yadav, V. P., & Bala, R. (2018). Land Use and Land Cover Classification of Multispectral LANDSAT-8 Satellite Imagery Using Discrete Wavelet Transform. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 42, 5.

Susilo, B., Sulastri, R., & Khikmah, F. (2018). Accuracy Assessment of Land Cover Fraction Map Derived from Landsat 8 Imagery Using Linear Spectral Mixture Analysis Method. IOP Conference Series: Earth and Envi.l Sci., 165(1), 12024. IOP Publishing.

Thomson, G., & Newman, P. (2018). Urban fabrics and urban metabolism–from sustainable to regenerative cities. Resour. Conserv. Recycl., 132, 218–229.

URT. (2010). National Forest Resources Monitoring and Assessment of Tanzania (NAFORMA) field manual–Biophysical survey. NAFORMA document M01–2010. Forestry and Beekeeping Division, Ministry of Natural Resources and Tourism.

van Heezik, Y., & Brymer, E. (2018). Nature as a commodity: what’s good for human health might not be good for ecosystem health. Front. Psychol., 9, 1673.

Wang, Y., Jiang, Y., Zheng, Y., & Wang, H. (2019). Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China. Sustainability, 11(7), 2002.

Watkiss, P., Downing, T., Dyszynski, J., Pye, S., Savage, M., Goodwin, J., … Lynn, S. (2011). The economics of climate change in the United Republic of Tanzania. Global Climate Adaptation Partnership (GCAP).

Xie, G., Zhang, C., Zhen, L., & Zhang, L. (2017). Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv., 26, 146–154.

Yesuph, A. Y., & Dagnew, A. B. (2019). Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environ. Syst. Res., 8(1), 17.

You, H., & Yang, X. (2017). Urban expansion in 30 megacities of China: Categorizing the driving force profiles to inform the urbanization policy. Land Use Policy, 68, 531–551 (20 pages).

Yuan, S., Zhu, C., Yang, L., & Xie, F. (2019). Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China. Int. J. Environ. Res. Public Health, 16(7), 1124.

Zari, M P. (2018). The importance of urban biodiversity–an ecosystem services approach. Biodivers. Int J, 2(4), 357–360.

Zari, M. P. (2014). Ecosystem services analysis in response to biodiversity loss caused by the built environment. SAPI EN. S. Surv. Perspect. Integr. Environ. Soc., (7.1).

Published
14 August, 2020
How to Cite
Manyama, M., Nahonyo, C., & Hepelwa, A. (2020). Analysis of the Impact of Built Environment on Coastline Ecosystem Services and Values. East African Journal of Environment and Natural Resources, 2(2), 44-63. https://doi.org/10.37284/eajenr.2.2.195