Habitats Heterogeneity Affects Bee Species Assemblage in an Urban Green Space: A Case Study of Nairobi Museum Botanic Garden, Kenya

  • Jane Muthoni Macharia National Museums of Kenya
  • George Gatere Ndiritu Karatina University
Keywords: Bees, Botanic Garden, Urban Environments, Green Public Spaces, Nature-Based Solutions
Share Article:


The conversion of natural landscapes into human-dominated areas has been identified as one major threat to the existence of biodiversity. However, properly managed anthropogenic biomes can act as areas of biodiversity conservation with the potential to provide ecosystem services similar to those obtained in natural habitats. Classic examples are botanic gardens that have become popular in urban centres as examples of nature-based solutions to landscape loss and degradation. To assess the importance of botanic gardens as biodiversity habitats, a study was carried out in the Nairobi Museum Botanic Garden (NMBG). Bees were sampled using pan traps and sweep nets in four habitats classified as gardens, including the Herbal Garden (HG), Memorial Garden (MG), Succulent Garden (SG), and Quarry Garden (QG). A total of 286 individual bees were collected, with MG having 83 individuals, QG (75), SG (66), and HG (62). Though HG recorded the lowest abundance of bees, it recorded the highest number of bee species (14), MG (13), SG (12), and QG (5). The diversity of bees was highest in the HG (H’=1.89), SG (1.88), MG (1.67), and QG (1.15). Meanwhile, high bee abundances and richness were strongly correlated with diverse flowering plants per habitat, with HG having the highest number of flowering plants (23), MG (16), SG (13) and QG (7). The study found that different flowering plants provided habitats that supported unique assemblages of bee communities, a scenario attributed to enhanced habitat heterogeneity. The findings demonstrated that botanic gardens can act as important habitats and refugia for bees in human-dominated landscapes. Therefore, the establishment and conservation of botanic gardens in urban areas is one way to contribute to Sustainable Development Goal 11 of ensuring sustainable cities and human settlements


Download data is not yet available.


Agnew, A. D. (2013). Upland Kenya wild flowers and ferns: A flora of the flowers, ferns, grasses, and sedges of highland Kenya. Nature Kenya-The East Africa Natural History Society.

Aram, F., Shahab, S., & Solgi, E. (2022). Impacts of urban green spaces on environmental perceptions and social life. Frontiers in Environmental Science, 10, 1050597.

Beentje, H. Kenya trees, shrubs and Lianas National Museums of Kenya, Nairobi, Kenya 1994. Google Scholar There is no corresponding record for this reference.

Bolund, P.,& Hunhammar, S.(1999). Ecosystem services in urban areas. Ecological economics, 29(2), pp.293-301.

Bullock, J.M. (2013). Plants. In: Sutherland W.J 2013 (ed). Ecological census techniques. Cambridge University Press. Cambridge, UK.

Burghardt, K. T., Tallamy, D. W., & Gregory Shriver, W. (2009). Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conservation biology, 23(1), 219-224.

Dou, Y., Zhen, L., De Groot, R., Du, B., & Yu, X. (2017). Assessing the importance of cultural ecosystem services in urban areas of Beijing municipality. Ecosystem Services, 24, 79-90.

Ellis, E. C. (2013). Sustaining biodiversity and people in the world's anthropogenic biomes. Current Opinion in Environmental Sustainability, 5(3-4), 368-372.

Ellis, E. C., & Ramankutty, N. (2008). Putting people on the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447.

Ellis, J. D., & Munn, P. A. (2005). The worldwide health status of honey bees. Bee World, 86(4), 88-101.

Elmqvist, T., Setälä, H., Handel, S. N., van der Ploeg, S., Aronson, J., Blignaut, J. N., ... & de Groot, R. (2015). Benefits of restoring ecosystem services in urban areas. Current opinion in environmental sustainability, 14, 101-108.

Frankie, G. W., Vinson, S. B., Rizzardi, M. A., Griswold, T. L., Coville, R. E., Grayum, M. H., ... & Pawelek, J. C. (2013). Relationships of bees to host ornamental and weedy flowers in urban Northwest Guanacaste Province, Costa Rica. Journal of the Kansas Entomological Society, 86(4), 325-351.

Gardiner, T., & Fargeaud, K. (2020). Microhabitats of planted sea wall strips used by pollinators and Orthoptera. Journal of Orthoptera research, 29(1), 77-82.).

Gikungu, M. W. (2006). Bee diversity and some aspects of their ecological interactions with plants in a successional tropical community (Doctoral dissertation, Universitäts-und Landesbibliothek Bonn).

Gitau, G. G., Kiragu, D. N. U., & Riro, G. K. (2019). Effect of heuristic factors and real estate investment in Embu County, Kenya.

Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957.

Hanski, L. (1998). Metapopulations dynamics. Nature 396: 41–49.

Hernandez, J. L., Frankie, G. W., & Thorp, R. W. (2009). Ecology of urban bees: a review of current knowledge and directions for future study. Cities and the Environment (CATE), 2(1), 3.

Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan-Dewenter, I. (2008). Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 275(1648), 2283-2291.

Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140.

Hutchinson, L., Norrey, J., Lockton, A., & Coulthard, E. (2020). Small areas of wildflower grassland in urban areas support significant species richness and abundance of pollinating insects. Entomologist's Gazette, 71(2), 103-119.

Jensen JT, Creinin MD (2020) Family planning, population growth, and the environment. Contraception, 101(3), pp.145-147.

Kikstra, J. S., Nicholls, Z. R., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., ... & Riahi, K. (2022). The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geoscientific Model Development, 15(24), 9075-9109.

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608), 303-313.

Kratschmer, S., Kriechbaum, M., & Pachinger, B. (2018). Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban ecosystems, 21, 429-446.

Landsman, A. P., Ladin, Z. S., Gardner, D., Bowman, J. L., Shriver, G., D'Amico, V., & Delaney, D. A. (2019). Local landscapes and microhabitat characteristics are important determinants of urban–suburban forest bee communities. Ecosphere, 10(10), e02908.

Lee, M. R., McNeil Jr, D. J., Mathis, C. L., Grozinger, C. M., & Larkin, J. L. (2021). Microhabitats created by log landings support abundant flowers and insect pollinators within regenerating mixed-oak stands in the Central Appalachian Mountains. Forest Ecology and Management, 497, 119472.

Maddox, D. (2018). Can cities save bees? How can urban habitats be made to serve pollinator conservation? How can that story be better told?.

Martens, D., Öztürk, Ö., Rindt, L., Twarok, J., Steinhardt, U., & Molitor, H. (2022). Supporting biodiversity: Structures of participatory actions in urban green spaces. Frontiers in Sustainable Cities, 4, 952790.

Matteson, K. C., Ascher, J. S., & Langellotto, G. A. (2008). Bee richness and abundance in New York City urban gardens. Annals of the Entomological Society of America, 101(1), 140-150.

McIntyre, N. E. (2000). Ecology of urban arthropods: a review and a call to action. Annals of the entomological society of America, 93(4), 825-835.

Michener CD (2000) The bees of the world. Florida Entomologist (Vol. 85). https://doi.org/10.1653/0015-4040(2002)085[0290:FMBLZH]2.0.CO;2

Molotoks, A., Henry, R., Stehfest, E., Doelman, J., Havlik, P., Krisztin, T., ... & Smith, P. (2020). Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B, 375(1794), 20190189.

Nicholson, C. C., Ward, K. L., Williams, N. M., Isaacs, R., Mason, K. S., Wilson, J. K., ... & Ricketts, T. H. (2020). Mismatched outcomes for biodiversity and ecosystem services: testing the responses of crop pollinators and wild bee biodiversity to habitat enhancement. Ecology Letters, 23(2), 326-335.

O'Hara, S. (2022). Nature-Based Solutions in Urban Areas. Frontiers in Environmental Science, 10, 904134.

Onuferko, T. M., Bogusch, P., Ferrari, R. R., & Packer, L. (2019). Phylogeny and biogeography of the cleptoparasitic bee genus Epeolus (Hymenoptera: Apidae) and cophylogenetic analysis with its host bee genus Colletes (Hymenoptera: Colletidae). Molecular phylogenetics and evolution, 141, 106603.06603.

Ruckelshaus, M. H., Jackson, S. T., Mooney, H. A., Jacobs, K. L., Kassam, K. A. S., Arroyo, M. T., ... & Ouyang, Z. (2020). The IPBES global assessment: pathways to action. Trends in Ecology & Evolution, 35(5), 407-414.

Sala, O. E., Stuart Chapin, F. I. I. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., ... & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. science, 287(5459), 1770-1774.

Sardinas, H. S., & Kremen, C. (2014). Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic and Applied Ecology, 15(2), 161-168.

Sayre, N. F., Davis, D. K., Bestelmeyer, B., & Williamson, J. C. (2017). Rangelands: Where anthromes meet their limits. Land, 6(2), 31.

Šlachta, M., Erban, T., Votavová, A., Bešta, T., Skalský, M., Václavíková, M., ... & Cudlín, P. (2020). Domestic gardens mitigate risk of exposure of pollinators to pesticides—An urban-rural case study using a Red Mason Bee species for biomonitoring. Sustainability, 12(22), 9427.

Ter Braak, C. J., & Verdonschot, P. F. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic sciences, 57, 255-289.

Titeux, N., Brotons, L., & Settele, J. (2019). IPBES promotes integration of multiple threats to biodiversity. Trends in Ecology & Evolution, 34(11), 969-970.

UN (United Nations) (2019) The Sustainable Development Goals Report 2019, UN, New York, https://doi.org/10.18356/55eb9109-en.

Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology, 75(7), 1861-1876.

Watson, K. B., Galford, G. L., Sonter, L. J., Koh, I., & Ricketts, T. H. (2019). Effects of human demand on conservation planning for biodiversity and ecosystem services. Conservation Biology, 33(4), 942-952.

Wenzel, A., Grass, I., Belavadi, V. V., & Tscharntke, T. (2020). How urbanization is driving pollinator diversity and pollination–A systematic review. Biological Conservation, 241, 108321.

Zanette, L. R. S., Martins, R. P., & Ribeiro, S. P. (2005). Effects of urbanization on Neotropical wasp and bee assemblages in a Brazilian metropolis. Landscape and Urban Planning, 71(2-4), 105-121.

22 February, 2024
How to Cite
Macharia, J., & Ndiritu, G. (2024). Habitats Heterogeneity Affects Bee Species Assemblage in an Urban Green Space: A Case Study of Nairobi Museum Botanic Garden, Kenya. East African Journal of Environment and Natural Resources, 7(1), 98-111. https://doi.org/10.37284/eajenr.7.1.1766