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ABSTRACT 

Generally, landslide susceptibility mapping is an important step in 

mitigating their impacts. There is, however, particular dearth of 

information on the application of GIS-based bivariate methods particularly 

the weights of evidence model in mapping landslide susceptibility on the 

slopes of Mount Elgon in eastern Uganda. This study, therefore, evaluated 

the susceptibility of Bukalasi milli-watershed to landslides, as an early 

warning strategy for the major landslide hotspot in Uganda. A landslide 

inventory for the study area was prepared, and the weights of influence of 

selected landslide-conditioning factors were calculated to present their 

relative importance in landslide susceptibility. Eight conditioning factors 

were considered in this study namely; land use, lithology, rainfall, 

elevation, slope aspect, slope angle, plan curvature and profile curvature. 

Following the results of the Agterberg-Cheng conditional independence 

test (probability = 62.5%), the hypothesis of conditional independence 

among these factors was accepted. Validation using the ROC indicated 

satisfactory performance of the model considering the model prediction 

rate (Area under the Curve = 0.882) and success rate (Area under the Curve 

= 0.912). The final landslide susceptibility map highlights high 

susceptibility in the southern and western parts of the study area. It further 

shows that whereas Bukibumbi, Bundesi and Suume parishes are the most 

prone parishes, Shibanga Parish is relatively the least prone to landslides 

disasters. Thus, such highly susceptible areas should be prioritised during 

intervention programmes, especially relocation of the residents at risk. 

Since the absence of forests has been indicated to exacerbate susceptibility 

to landslides, deforestation should have severe penalties, and extensive 

tree-planting should instead be encouraged. Other human activities like 

farming on fragile slopes, which would further destabilise the slopes should 

particularly be discouraged.  
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INTRODUCTION 

Landslide disasters are some of the effects of 

climate change (Neema et al.,2018) attributed 

directly or indirectly to human activities (IPCC, 

2014; Xing et al., 2021). Globally, a total of 4,862 

landslide occurrences were recorded between 

2004 and 2016 (Froude & Petley, 2018). Uganda, 

in particular, has recently suffered many losses in 

several mountainous regions due to landslides. 

The most devastating landslide disaster in Uganda 

so far remains the Bududa landslide of March 1, 

2010, which destroyed socio-economic 

infrastructure and killed over 365 people, while 

displacing several hundreds of people (Kitutu, 

2010; Mugagga et al., 2012). The frequency of 

landslides in the area significantly increased from 

the early 2000s (Nakileza & Nedala, 2020). 

Uganda’s Vision 2040, and the Third National 

Development Plan (NDPIII) has, therefore, 

identified the need to strengthen the monitoring 

and early warning systems for disasters caused by 

natural hazards including landslides (National 

Planning Authority, 2020). This would reduce 

losses, increase resilience, and reduce income 

inequality among the population. Such important 

tools include landslide susceptibility maps (Byou, 

2021; Xing et al., 2021), which show the 

likelihood of a landslide occurrence in an area on 

the basis of local inducing factors (Li et al., 2021; 

Pham et al., 2015). 

Although a significant number of landslide studies 

have been undertaken on the slopes on Mount 

Elgon in Eastern Uganda (e.g., Gorokhovich et 

al., 2013; Kitutu, 2010; Kitutu et al., 2009; 

Mugagga et al., 2012; Nakileza & Nedala, 2020; 

Neema et al., 2018; Staudt et al., 2014 etc.), most 

of them have focused on the conditioning factors, 

socio-economic implications, risk reduction, 

landscape evolution and landslide inventories in 

the region. However, there is specific dearth of 

information on the application of GIS-based 

bivariate methods, particularly the weight of 

evidence model in mapping landslide 

susceptibility in landslide hotspots such as the 

Bukalasi milli-watershed. Accordingly, this 

study, therefore, evaluated the susceptibility of 

Bukalasi milli-watershed to landslides using 

weights of evidence model. The study was aimed 

at determining the extent to which selected 

landslide-conditioning factors contribute to 

landslides, thus presenting their relative 

importance in landslide susceptibility. The 

evaluation is key for   an early warning strategy 

during the development of resilience plans and 

community-driven risk-reduction interventions. 

The calculated weights of influence for selected 

conditioning factors provide knowledge on the 

possibilities of managing certain factors in order 

to reduce the occurrence of landslide disasters. 

The landslide susceptibility map (LSM) generated 

for the study area could be used as an essential 

tool for planners and engineers in sustainable 

development. 
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METHODS AND MATERIALS 

Study area 

This study was undertaken in Bukalasi milli-

watershed, a landslide hotspot located within 

Manafwa watershed on the slopes of Mount 

Elgon, Eastern Uganda (Figure 1). The watershed 

is bound by latitude 0° 59' 17.66" & 1° 3' 2.88", 

and longitude 34° 23' 24.08" & 34° 26' 24.01". 

The study area is dominantly hilly, thereby 

making it more prone to landslide disasters 

(Kitutu, 2010). The area receives a bimodal 

rainfall pattern with an average annual amount of 

1800 mm (Staudt et al., 2014). The wettest periods 

occur from March to November, while the dry 

season is mainly from December to March. The 

mean monthly maximum temperatures range 

between 25 °C and 29 °C. The soils in the area are 

described as being mainly Vertisols, characterised 

by clay content exceeding 41%, therefore, making 

the area more prone to landslides (Mugagga et al., 

2011). The slopes consist of material from 

agglomerates, lavas, nephelinites and phonolites 

(Staudt et al., 2014). Most households in the area 

are engaged mainly in agriculture with emphasis 

on food crops such as bananas, cassava, sweet 

potatoes, yams, beans, maize, and ground nuts. 

Consequently, much of the land including steep 

slopes, ranging between 36o and 58o has been 

cultivated (Mugagga et al., 2012), which further 

increases the risk of landslide occurrences. 

Figure 1: Map of study area. Past landslides indicated. 

 

Data Collection 

Landslide Inventory Map 

The first step in this study was to prepare the 

landslide inventory map, which specified the 

locations of the landslides that have occurred in 

the milli-watershed. Data for the landslide 

inventory map was obtained from field surveys 

using Global Positioning System (GPS) mapper 

and interpretation of aerial photographs as 

recommended in similar studies (e.g Nohani et al., 

2019), particularly Google Earth images taken 

between 2003 and 2020. Literature search, 

government reports, community consultations and 

news reports informed the approximate timelines 

that aided these interpretations. Presence of debris 

and removal of vegetation was used as indicators 

of landslides (Figure 2), which was done by 

comparing images taken before and after 

landslides processes. 
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Figure 2: Landslide scar observed from Google Earth. Removal of vegetation as an indicator 

 

Field surveys were undertaken to verify the 

landslide locations identified from Google Earth 

images. This involved visiting the study area to 

identify landslide locations, and taking 

coordinates at the main scarp (Figure 3) using 

GPS mapper using GPS mapper as described by 

Broeckx et al., (2018). The reliability of the 

inventory data was enhanced by information from 

local community members who had witnessed 

past landslides that were not discernible at the 

time of the field surveys. Coordinates of the 

landslide scars were used to build a landslide 

inventory map of the study area in ArcGIS 10.7 

software. This was done by adding the Ms-Excel 

file (.csv) containing the landslide coordinates 

into the map of the study area through the ‘Add 

XY Data’ icon in the File tool bar of ArcGIS 10.7. 

The identified landslide locations were then 

divided into two categories; 75% as the model 

training datasets and 25% as the test dataset for 

model validation. This proportion has been 

proven to give accurate results with limited 

landslide inventory data (Gadtaula & Dhakal, 

2019; Devkota et al., 2013; Eeckhaut et al., 2012). 

In order to avoid bias, a simple random sampling 

technique was thus used to group the landslide 

locations into the two datasets as indicated above.  

 

Figure 3: The main scarp of a landslide in Maika Parish. Photo taken by Mande, November 2020 
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Preparation of Database for the Landslide-

Conditioning Factors 

Following other landslide susceptibility studies 

(Benchelha et al., 2019; Broeckx et al., 2018; 

Canavesi et al., 2020; Devkota et al., 2013; 

Elmoulat & Lahcen, 2018; Nohani et al., 2019), 

the parameters considered in this study were: 

topographical parameters (slope angle, slope 

aspect, elevation, and curvature), lithology, land 

use and rainfall. 

Topographical parameters: A 30m Digital 

Elevation Model (DEM) was downloaded from 

ASTER global DEM for topographic 

parameterisation. Voids in the DEM were filled 

and the watershed was delineated in ArcGIS 10.7. 

The topographic surfaces including slope angle, 

elevation, slope aspect, profile curvature and plan 

curvature were generated, and re-classified to 

produce the respective maps (Figures 4 to 8). 

These were calculated from the surface option of 

spatial analyst tools. The output curvature also 

included plan and profile curvatures, which were 

the two measures of curvature considered in this 

study. These topographic parameters were 

prioritized in this study following several previous 

studies which reported their importance in 

landslide susceptibility mapping (Chen et al., 

2019; Devkota et al., 2013; Yalcin et al., 2011). 

Lithology:  The lithology map layer was derived 

in ArcGIS 10.7, by clipping out the study area 

from the lithological map obtained from the 

Directorate of Geological Survey and Mines for 

Uganda. Lithology was considered important 

factor in landslide distribution due to its influence 

soil formation. Differences in soil formation leads 

to a variation in the soil structure, composition, 

and permeability, and consequently material 

strength (Nohani et al., 2019). The resulting 

lithology map of the study area was then classified 

following the three distinct classes namely: biotite 

granite, agglomerate, and metagreywacke (Table 

1; Figure 9). 

 

Table 1: Lithological units of study area 

Code Lithology name Era 

NeEag Volcanic mudflow (lahar), agglomerate, lava Cenozoic 

A3Tbg Biotite granite Neoarchaean 

A3WBgw Metagreywacke Neoarchaean 

Land use: The land use distribution for the study 

area was obtained from the interpretation of 20m 

sentinel 2A images taken between January 30 and 

February 06, 2019. The image was freely 

downloaded from earth explorer 

(https://earthexplorer.usgs.gov/). The imagery 

data was imported into ArcGIS 10.7, and a single 

raster was created from the multiple image bands 

using the ‘Composite Bands’ tool in data 

management. The study area was then clipped 

from the resulting raster. Using the image 

classification tool, the training dataset was created 

by drawing polygons around corresponding land 

uses on the image classification layer. The 

training samples were then used in identifying the 

different land use types following the interactive 

supervised classification. The major land use 

types identified were cultivated areas, built-up 

areas, tropical forests, bare lands, and woodlands 

(Figure 10). The use of such images was cost-

effective, and was also suitable for mountainous 

or inaccessible areas as recommended by previous 

studies (Guzzetti et al., 2012). 

Rainfall: Rainfall data for the study area was 

obtained from the Uganda National 

Meteorological Authority (UNMA). A CSV 

(comma delimited) Excel file was created for the 

averages of the yearly total rainfall between 2005 

and 2019 together with the corresponding 

coordinates. This file was then added into ArcGIS 

10.7 using the Add XY Data tool. Afterward, an 

interpolation using Inverse Distance Weighting 

(IDW) was run for these points, and the rainfall 

map for the study area was extracted by mask. The 

resulting rainfall map was classified into three 

main classes by manually setting the intervals 

(Figure 11).
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Figure 4: Slope angle map of the study area 

 

Figure 5: Elevation map of the study area 

 

Figure 6: Slope aspect map of study area 

 

Figure 7: Profile curvature of study area 

 

Figure 8: Plan curvature map of study area 

 

Figure 9: Lithology map of study area 
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Figure 10: Land use map of the study area 

 

Figure 11: Rainfall map of the study area 

 

 

Data Analysis 

Application of the Weight of Evidence Model 

Every landslide conditioning factor map was 

crossed with the landslide inventory map using the 

ArcGIS 10.7 software, and landslide density in 

each class was calculated, to get the weights for 

each thematic map (Chen & Li, 2014). The 

weights of landslide conditioning factors were 

calculated using the following equations: 

 W+ =  ln (
𝑙𝑎𝑛𝑑𝑙𝑠𝑖𝑑𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑎𝑟𝑒𝑎
 ÷

 
𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎
) 

  

W− =  ln (
𝑙𝑎𝑛𝑑𝑙𝑠𝑖𝑑𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑎𝑟𝑒𝑎
 ÷

 
𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎
) 

The amount of contrast of weights, (C=W+ −
W−), displays the spatial relationship between the 

landslide conditioning factors (Nohani et al., 

2019). 

The standard deviation of the weights, S(C), was 

calculated as: 

S(C)  =  √𝑆2W+ + 𝑆2W− 

Where S2W+, and S2W- are the variance of 

positive weights and negative weights, 

respectively. 

The final weight of the landslide conditioning 

factors and its confidence was obtained by 

calculating the ratio of the contrast, C, to the 

standardised contrast, S(C) (Chen & Li, 2014).  

The Weight of Evidence was computed using the 

ArcSDM (Spatial Data Modeller) Tools in 

ArcGIS 10.7. The weights obtained were then 

analysed using the calculate response of ArcSDM 

Tools in ArcGIS 10.7 software, to obtain the final 

landslide susceptibility map. The susceptibility 

map was reclassified into five classes namely:  

very low, low, moderate, high, and very high 

(Chen et al., 2019). 

Test for Conditional Independence 

The Agterberg-Cheng Conditional Independence 

(CI) test was applied, since the model assumes 

conditional independence of the evidence with 

regards to the training dataset. Agterberg and 

Cheng (2002), proposed that conditional 

independence of all the map layers implies that the 

sum of the posterior probabilities (T) is equal to 

the total number of discrete events (n). Agterberg-

Cheng CI probability values greater than 95% 

indicates that the hypothesis of conditional 

independence should be rejected (Elmoulat & 

Lahcen, 2018). In addition, any value greater than 

50% indicates some level of conditional 

dependence. The test was implemented in the 

ArcSDM Tools extension of ArcGIS 10.7. 
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Validation of the Model 

Twenty-five percent (25%) of the total landslides 

were used to validate the model using the 

Receiver Operating Characteristic (ROC), and the 

Area Under the Curve (AUC) method. Each 

threshold considered for calculations forms four 

types of pixels – a binary confusion matrix: the 

true positive (TP), the false positive (FP), the true 

negative (TN) and the false negative (FN) 

(Maxwell et al., 2021). The TP and FN pixels are 

landslides within the classes above and below the 

threshold, respectively. The TN AND FP pixels 

are the stable pixels within the classes below and 

above the value of the threshold, respectively 

(Vakhshoori & Zare, 2018). Based on the number 

of pixels for each threshold, two statistics were 

calculated:  

TP rate = FNTP + FN 

FP rate = FPTN + FP 

The TP and FP rates were plotted on the y-axis 

and x-axis of the ROC, respectively. The AUC 

value shows the model success rate by engaging 

the training dataset and its prediction rate by 

engaging the test dataset, using the ArcSDM ROC 

tool. The success rate describes how well the 

model fits with past landslide occurrences. On the 

other hand, prediction rate describes how well the 

model predicts occurrences of landslides in future 

(Pham et al., 2015; Pradhan et al., 2010). The 

AUC value ranges from 0.5 to 1(Nohani et al., 

2019). The higher the value of the AUC, the better 

the performance of the model (Gudiyangada et al., 

2019). 

RESULTS 

Landslide Inventory 

A total of 47 landslide scars were identified, and 

then divided into two groups: - a) 35 landslides as 

the training dataset and b) 12 landslides for 

validation of the model (Figure 1). Considering 

land use, the largest proportion of landslides were 

identified in cultivated areas, while the least 

occurrences were identified in forested areas. 

Equal number of landslides were identified in bare 

lands, wood lands, and in built-up areas. Some of 

these landslides occurred very close to homes 

(Figure 12). Concerning lithology, most of the 

landslides occurred in areas with biotite granite, 

and each of the areas characterised with 

agglomerates and metagreywacke accounted for 

the least number of landslides in equal proportion. 

Most of the landslides were identified in the west 

and north aspects of slope. No landslide was 

identified in the flat slopes. Considering both 

profile and plan curvatures, the negative slopes 

bore the least landslide disasters. Similarly, very 

few (8.57%) landslides were identified in areas 

receiving less than 1650 mm/year of rainfall. 

More than half of the total landslides occurred in 

areas that receive 1650-1700 mm/year. More than 

75% of the landslides were identified in areas with 

slopes of exceeding 10˚. Additionally, almost all 

the documented landslides were in cultivated 

areas. Built-up areas, woodlands, and bare lands 

had equally very low landslide numbers. Finally, 

the largest number of landslides were identified in 

areas with elevation above 1,997 m while only a 

few landslide disasters were occurred below 1497 

m. 
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Figure 12: A landslide very close to a home in Bundesi Parish. Photo taken by Mande, November 

2020 

 

Influence of the Conditioning Parameters on 

Landslide Occurrence 

The results from the analysis using the weights of 

evidence for the selected conditioning parameters 

(Figures 4 to 11) are presented in Table 2. The 

negative values of the weights indicate that such 

class is not favourable to landslide occurrence, 

while a positive weight indicates that the presence 

of that class favours landslide disasters. The 

C/s(C), the ratio of the contrast to the standardised 

contrast, is the final weight, which is taken as the 

overall contribution of a factor class to landslide 

susceptibility.  

Of all the parameter classes, cultivated areas had 

the largest positive weight (C/s(C) = 2.478), 

followed by slope angles which was greater than 

40 (C/s(C) = 2.045), biotite granite lithology 

(C/s(C) = 1.697), elevation of 1397-1497 m 

(C/s(C) = 1.642) and north oriented slopes (C/s(C) 

= 1.490). This is an indication that slopes with a 

combination of these classes are highly 

predisposed to landslide occurrence. On the other 

hand, the largest negative standardised contrast 

values were seen in areas characterised with 

agglomerates (C/s(C) = -1.882), and elevations 

ranging between 1897 and 1997 m (C/s(C) = -

1.263). Such large negative values demonstrates 

that these classes are not important in triggering 

landslides in the study area.
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Table 2: Weights of evidence analysis between the training dataset and conditioning factors 

Factor Area (%) Landslides (%) W+ S(W+) W- S(W-) C S (C) 

Rain (mm/yr) <1650 7.29 8.57 0.162 0.209 0.282 0.289 -0.402 0.357 

1650 – 1700 74.11 65.71 -0.120 0.578 -0.014 0.177 0.176 0.605 

>1700 18.60 25.71 0.325 0.334 -0.092 0.196 0.416 0.387 

Slope angle (degrees) <10 13.06 8.57 -0.392 0.578 0.048 0.180 -0.440 0.605 

10 - 30. 31.27 40.00 0.276 0.268 -0.156 0.224 0.432 0.349 

20 – 30 34.49 25.71 -0.265 0.334 0.116 0.200 -0.381 0.389 

30 – 40 18.46 17.14 -0.228 0.448 0.045 0.186 -0.273 0.485 

>40 2.74 8.57 1.176 0.579 -0.065 0.180 1.240 0.606 

Elevation (m.a.s.l) 1397 – 1497 1.86 5.71 1.158 0.709 -0.042 0.177 1.200 0.731 

1497-1597 12.00 17.14 0.387 0.409 -0.067 0.189 0.453 0.451 

1597-1697 17.01 14.29 -0.146 0.448 0.028 0.186 -0.174 0.485 

1697-1797 29.06 31.43 0.107 0.302 -0.048 0.209 0.155 0.367 

1797-1897 22.21 17.14 -0.230 0.409 0.057 0.189 -0.288 0.450 

1897-1997 13.55 5.71 -0.836 0.707 0.085 0.177 -0.921 0.729 

1997-2097 4.01 5.71 0.385 0.708 -0.020 0.177 0.405 0.730 

>2097 0.30 2.86 -0.008 0.001 0.447 0.174 -0.009 0.480 

Slope aspect Flat 0.31 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

North 32.12 28.57 0.383 -0.137 0.289 0.196 0.520 0.349 

East 6.54 11.43 0.300 0.578 -0.025 0.180 0.325 0.605 

South 26.91 25.71 -0.016 0.334 0.006 0.200 -0.022 0.389 

West 34.12 34.29 0.034 0.289 -0.018 0.213 0.052 0.359 

Profile curvature Negative 15.48 14.29 -0.051 0.448 0.009 0.186 -0.060 0.485 

Zero/flat 36.66 45.71 0.186 0.259 -0.126 0.230 0.311 0.346 

Positive 47.86 40.00 -0.151 0.268 0.121 0.224 -0.272 0.349 

Plan curvature  Negative 20.73 17.14 -0.161 0.409 0.038 0.189 -0.200 0.450 

Zero/flat 33.69 34.29 -0.041 0.302 0.020 0.209 -0.060 0.367 

Positive 45.58 48.57 0.093 0.243 -0.085 0.243 0.178 0.343 

Lithology A3Tbg 82.76 94.29 0.131 0.174 -1.106 0.707 1.236 0.729 

A3WBgw 0.69 2.86 1.422 1.004 -0.022 0.172 1.444 1.019 

NeEag 16.54 2.86 -1.758 1.000 0.152 0.172 -1.910 1.015 

Land use Woodlands 4.10 5.71 0.332 0.708 -0.017 0.174 0.349 0.729 

 Forested areas 2.46 2.86 -0.090 0.018 0.408 0.177 -0.107 0.445 
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Factor Area (%) Landslides (%) W+ S(W+) W- S(W-) C S (C) 

 Cultivated areas 87.88 80.00 1.429 -0.063 0.578 0.169 1.493 0.602 

 Built-up areas 1.47 5.71 1.366 0.710 -0.044 0.174 1.410 0.731 

 Bare lands 4.09 5.71 0.335 0.708 -0.017 0.174 0.352 0.729 
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Landslide Susceptibility 

Analysis of the weights together with the training 

landslide points reveals that whereas the eastern and 

northern part of the study area is the least 

susceptible to landslide occurrence, the southwest 

areas are the most susceptible (Figure 13). The 

percentage of the area classified under each 

susceptibility category was as follows: 18.84% in 

the very low class, 24.81% in the low class, 

333.85% in the moderate class, 19.77% in the high 

class, and 2.73% in very high susceptibility class. 

This shows that the largest part of the study area was 

predicted as having moderate susceptibility to 

landslides. Moreover, Bukibumbi, Bundesi, 

Nabulalo, and Suume parishes were identified as 

being more likely to experience landslide disasters 

in future. Shibanga Parish was considered to be 

relatively least prone to landslides disasters. It is 

also important to note that these classes are not 

absolute but rather relative degrees of susceptibility. 

 

Figure 13: Landslide susceptibility map of the study area 

 

Conditional Independence 

The probability that this model is not conditionally 

independent was 62.5%, which is an acceptable 

value given the rule that probability values greater 

than 95% indicate that the hypothesis of conditional 

independence should be rejected (Nohani et al., 

2019; Pham et al., 2015; Pradhan et al., 2010). 

Thus, the hypothesis of conditional independence 

among the eight landslide conditional factors is 

accepted. The test also revealed an overall CI 

accuracy of 85.0%, which indicates sufficient 

accuracy. Therefore, the results of the Agterberg–

Cheng test demonstrate that the conditioning factors 

used in this study are suitable for predicting 

landslides. 

Validation 

Analysis using the training dataset generated a ROC 

with an AUC value equal to 0.882 (Figure 14), 

which is considered a reasonable value (Nohani et 

al., 2019). This demonstrates that the weights of 
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evidence model fit well with past landslide 

disasters. Secondly, the ROC from the validation 

dataset yielded an AUC value of 0.912 (Figure 15), 

which is considered an indicator of very good 

prediction rate as demonstrated by other studies 

(Canavesi et al., 2020; Chen et al., 2019; Manchar 

et al., 2018). Therefore, the model and the 

considered conditioning factors performed 

reasonably well in predicting future landslides in the 

study area. Lastly, the ROC curves for both 

prediction rate and success rate are above the 

random guess line. This shows that the model 

performs with greater accuracy in landslide 

susceptibility, effectively better than by simple 

chance. Therefore, the resulting susceptibility map 

is adequately reliable, and could be used by decision 

makers, engineers, and government organizations to 

better planning for sustainable development 

(Elmoulat & Lahcen, 2018). 

 

Figure 14: ROC curve to show the success rate of the model 
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Figure 15: ROC curve to show the prediction rate of the model 

 

DISCUSSION 

Influence of the Selected Conditioning Factors 

Weight of evidence analysis revealed that the north-

facing slopes are the most favourable to potential 

landslides, which could be attributed to its reception 

of least sunshine relative to other slopes (Nohani et 

al., 2019), hence moister. This finding is also in 

agreement with similar studies (Mugagga et al., 

2012) that reported relatively more landslide 

processes in the north-oriented slopes. Slopes 

characterised by flat profile and positive plan 

curvature similarly had positive weights of 

influence on landslides, which when compounded 

with other factors predisposes a slope to landslides. 

Of the three types of lithology identified in the 

watershed, biotite granite lithology had very high 

positive influence on landslide occurrence possibly 

because of forming soils with high clay content that 

are prone to slope failure (Kitutu, 2010). This also 

demonstrates the role of the inherent factors that 

determine the nature of the soils in the area. 

Flat slopes did not show any significant importance 

in predicting landslides, because materials cannot 

slide on flat surfaces under the pull of gravity. The 

perpendicular force is highest on flat slopes (Chen 

et al., 2019), and, therefore, unlikely to slide. It was 

also noted that lower elevations (1397-1597 m) had 

higher influence to landslides which can be 

explained by the removal of forest cover (Mugagga 

et al., 2012). This collaborates the findings of 

(Nohani et al., 2019) that report lowest elevation as 

having greater impacts on landslides. 

The high weights for the cultivated areas are 

expected because cultivation involves clearing 

existing vegetation, and tilling the ground. Such 

activities modify and cumulatively lower the 

threshold of slope stability, leading to its likely 

failure (Mugagga et al., 2012). Built-up areas are 

also associated with slope cutting for foundations. 

Building roofs additionally collect and redirect rain 
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water in large volumes, increasing the water 

pressure as it flows downhill. This can potentially 

trigger landslides. On the contrary, forested areas 

are rich with vegetation whose roots further bind the 

soil materials and stabilise slopes (Kitutu et al., 

2009; Nohani et al., 2019). This could explain their 

reported negative weights of influence on 

susceptibility to landslides in the area. 

Rainfall has been reported as the major triggering 

factor to landslides on the slopes of Mount Elgon 

(Kitutu, 2010). Likewise, this study indicates that 

rainfall amounts greater than 1650 mm/year can 

potentially lead to landslide disasters. This is 

because rain water saturates the soil and increases 

the soil moisture content, in addition to acting as a 

lubricant of clay minerals which facilitates their 

sliding. This is further compounded by the 

concentration of rain in two wet seasons per year 

(Staudt et al., 2014). This study also demonstrated 

that landslides can occur in forested areas, despite 

having negative weights and thus negative 

correlation to landslides. This finding is in 

agreement with previous studies in the region that 

identified landslides in a forested area in Kitati, 

Sironko District attributed to soils with clay content 

well above 20% Mugagga et al (2012). 

As suggested by the weights of evidence analysis in 

this study, slopes with higher gradients are more 

susceptible to landslides. As slope angle increases, 

the shear stress in the soil or other unconsolidated 

material generally increases and the landslide 

probability becomes higher (Chen et al., 2019). This 

study also demonstrated the high influence of 

lithology on the landslide occurrence in the area, as 

indicated by their high weights. By implication, 

inherent factors are very important in the overall 

stability of a slope, and can further be exacerbated 

by human interference. 

Landslide Susceptibility 

The final landslide susceptibility map (LSM) 

predicted a large part of the study area (52.70%) as 

having moderate and high susceptibility to 

landslides. By implication, the landslides are more 

likely to occur in the area under the present 

conditions. Furthermore, 37.03% and 34.94% of the 

study area classified as very highly susceptible to 

landslides lie in Bukibumbi and Bundesi parishes, 

respectively. Hence these two parishes are 

particularly noteworthy in their contribution to the 

overall high susceptibility of the study area. This 

equally points to the significance of potential 

landslide disasters in the study area. The relatively 

high susceptibility to landslides in Bukibumbi 

Parish can be explained by the relatively high 

population density in the area: 729 people per 

square kilometre, which forces people to 

concentrate their activities on steeper slopes (Chen 

& Li, 2014). The highest population in Bukalasi Sub 

County was also recorded in the same parish (1,962 

people) according to the 2014 national census 

(Uganda Bureau of Statistics, 2018). Furthermore, 

much of Bukibumbi Parish is under the cultivated 

area land use type, which the weights of evidence 

analysis have indicated to strongly favour 

landslides. Other studies have likewise reported the 

strong influence of cultivation on slope failures 

(Xing et al., 2021). 

CONCLUSION AND RECOMMENDATIONS 

The area’s natural characteristics, such as elevation, 

lithology, slope angle, slope aspect and slope 

curvature predispose the study area landslide. 

Generally, the relative importance of the 

conditioning factors considered in this study 

decreases in the order of; lithology>land use>slope 

aspect>rainfall>slope angle>elevation>curvature. 

Contrast values also show that landslide disasters 

are more likely in cultivated areas, and in areas 

characterised by biotite granite lithology. In regards 

to slope aspect, the north facing slopes are most 

prone to landslide occurrence. Further still, 

susceptibility to landslides generally increases with 

rainfall and slope angle. On the other hand, forests 

have strong negative correlation to landslides, and, 

therefore, such areas are relatively stable and less 

prone to landslide disasters. 

Based on the landslide susceptibility map of the 

milli-watershed, intervention programs, such as 

government relocations plans should prioritise 

residents in the high susceptibility areas. These 

include especially those living on steep slopes, or 

those whose gardens are in those areas in order to 

minimise slope disturbance. Deforestation should 

have severe penalties since forests have been shown 

to reduce landslide susceptibility. Other human 

activities like farming on fragile slopes, that would 
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further destabilise the slopes should also be 

discouraged. Instead, extensive reforestation 

programs should be implemented on slopes that 

have been indicated to be more susceptible to 

landslide processes, such as the north facing slopes, 

to reduce the likelihood of landslides in the area. 

Development activities such as infrastructural 

developments and settlements should be well 

planned to avoid the more unstable slopes that are 

indicated to favour landslides. This would reduce 

losses in the event of landslide occurrences. 

Although this study predicts the area’s susceptibility 

to landslides, further studies are recommended to 

understand how each of the conditioning parameters 

contribute to landslides, and the synergetic 

interactions among these factors if any. 
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