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ABSTRACT 

The conversion of natural ecosystems into agricultural or urban areas can alter 

geomorphological processes, particularly in landslide-prone regions. 

Landslides in such areas can be triggered by natural events like heavy rainfall 

or earthquakes, as well as human activities such as deforestation and unplanned 

urbanization. Their impacts can be severe, resulting in significant socio-

economic damage. Uvira Territory, in the western part of the East African Rift 

Valley, frequently experiences these events. It is located between the Ruzizi 

Plain to the east and the Mitumba Mountains to the west, with diverse geology 

comprising precambrian formations and quaternary sediments. The topography 

has a stepped relief with altitudes ranging from 770 to 3250 meters. The climate 

is tropical and humid, with a rainy season from September to May and a dry 

season from June to August. The area features coastal plains and mountain 

slopes, with many waterways flowing into Lake Tanganyika or the Ruzizi 

River. Detailed studies on landslide susceptibility mapping in this area are 

limited. This study aimed to map landslide susceptibility in the Kiliba River 

catchment to assist policymakers in land management. It used Google Earth 

images, GPS surveys, and field observations, applying a Frequency Ratio (FR) 

model that considered seven geo-environmental factors: slope, aspect, 

elevation, distance to watercourses, topographic wetness index, vegetation 

cover, and land use/landcover. The inventory identified 106 landslides in the 

study area, with densities of up to 11.25 landslides per km². Key factors in 

predicting landslide susceptibility were slope, elevation, and vegetation cover. 

The prediction model had an accuracy rate of 72.2%. The study shows that 

regions at medium elevation with steep slopes and low vegetation cover are 

mostly at risk for landslides. These findings are key for land management and 

disaster prevention. Future studies should consider more factors and a broader 

geographic range to enhance risk management. 
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INTRODUCTION 

In recent decades, natural disasters, including 

floods, earthquakes, wildfires, and landslides, 

have increased in frequency and intensity (Ozer, 

2009). Landslides pose a significant hazard in 

numerous regions characterized by pronounced 

relief. Their consequences, contingent upon the 

scale and velocity of the processes, can precipitate 

into severe disruptions in societal structures. They 

incur loss of life and inflict structural and 

functional damage to infrastructure (Akter et al., 

2018; Mugaruka, 2018). Furthermore, they 

engender disturbances to aquatic ecosystems in 

lakes through river siltation (Alin et al., 2002; 

Mölsä et al., 1999). In humid tropical regions, 

these disasters are often linked to intense rainfall, 

causing landslides that significantly impact local 

communities (Saley et al., 2005). The 

ramifications of landslides can transcend their 

immediate locale; they disrupt natural water 

drainage and alter sediment balances, leading to 

river siltation and potentially triggering flash 

floods (Gill and Malamud, 2014). 

The Democratic Republic of the Congo (DRC) 

ranks among the countries most vulnerable to 

disasters from natural hazards stemming from 

gravitational movements. These disasters, on a 

national scale, rank as the second deadliest after 

volcanic eruptions between 1968 and 2003 (Maki 

and Dewitte, 2014). The western part of the East 

African Rift Valley, where the territory of Uvira 

is located, is one of the regions most affected by 

deadly landslides (Maki et al., 2016). The urban 

areas of Uvira, particularly its urban core, have 

borne the brunt of various natural disaster events 

in recent years, notably, floods attribute to 

landslides in the hills surrounding the city of 

Uvira and its environs (Azanga et al., 2016). 

Population growth and unplanned land use 

contribute to this vulnerability (Defries et al., 

2010). Although the problem is serious, only a 

limited number of studies have explored landslide 

susceptibility mapping in this region. The works 

of Depicker et al. (2020) and Dewitte et al. (2021) 

are among the few that have addressed this topic 

in the East African Rift Valley. Our study aims to 

fill this gap by mapping the landslide 

susceptibility gradient in the eastern part of the 

Democratic Republic of Congo, with a particular 

focus on the Kiliba River catchment in the Uvira 

territory. Through this analysis, we hope to 

identify the most vulnerable areas and provide 

valuable data for land-use planning and risk 

management. The results will allow policymakers 

to develop strategies to minimize the risks 

associated with landslides and mitigate their 

devastating consequences. 

STUDY AREA 

The study area is part of the northwest basin of 

Lake Tanganyika in the western sub-catchment in 

of the Ruzizi River. It is located between 

3°11'50’’ and 3°19’19’’ south latitude and 

28°57’47’’ and 29°12’38’’ east longitude (Figure 

1). 
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Figure 1: Location map of the study area. 

 

It is situated between the Ruzizi Plain (to the east) 

and the Mitumba Mountains (to the west), from 

which its watercourses originate. Its eastern 

boundary is marked by the Ruzizi River, which 

serves as its outlet. To the southeast, it is bounded 

by the city of Uvira. The altitude ranges from 770 

meters to 3250 meters.  

The territory of Uvira, located in the western 

branch of the East African Rift Valley, features a 

geography characterized by a stepped relief 

formed by a succession of horsts and grabens The 

landscape consists of two main geomorphological 

components: the coastal plain and the eastern 

slope of the Mitumba Mountains (Ilunga, 1991). 

This region encompasses the Kiliba catchment, 

traversed by many small rivers, some permanent 

and others temporary, which either flow into Lake 

Tanganyika or the Ruzizi River after descending 

longitudinal slopes of 10 to 12% (Ilunga, 2006). 

The geology of the territory is based on 

precambrian formations that are folded and 

metamorphosed, consisting of gneiss, quartzites, 

mica schists, amphibolite, schists, granites, along 

with quaternary formations containing old sandy-

gravelly alluvium (Ilunga, 1991). The Paleozoic 

formations primarily occupy the mountainous 

area, while Quaternary sediments are located in 

the plain, creating a diverse and complex 

geological landscape (Nacishali, 2021a).The 

region has a humid tropical climate characterized 

by the alternation of two unequal seasons: a rainy 

season from September to May and a dry season 

from June to August. Annual precipitation varies 

between 868 mm and 2041 mm, with an average 

of 1525 mm. In the city of Uvira, precipitation is 

less than 1000 mm, but with increasing altitude, 

precipitation ranges from 1000 to 2000 mm in the 

high plateaus in the central and western regions 

(Nacishali, 2021b). The average annual 

temperature is 24°C, and the maximum 

temperature in the Lake Tanganyika valley almost 

always exceeds 25°C on average throughout the 

year. The minimum temperature remains above or 

equal to 20°C every three days. The wind is 

generally from the south and very low to the 

ground during the night and morning, 

strengthening in the afternoon (Azanga et al., 

2016; Nacishali, 2021b).  

MATERIAL AND METHODS 

Landslide Inventory 
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A higher resolution of images across the entire 

study area can facilitate the detection of landslides 

more easily, especially in sectors where landslides 

are rare (Maki and Dewitte, 2014). Landslides 

were initially identified on Google Earth images, 

and for each identified landslide, a point was 

placed with an identity. The landslides were then 

digitized into polygons. The layer in KML format 

containing all landslides was created, saved, and 

then imported into ArcGIS to be converted into a 

vector (shapefile) format. Due to the scarcity or 

very limited number of available images in the 

study area, the temporal aspect or age of 

landslides was not considered (the age of 

landslides was not regarded as a variable or 

parameter). The use of Google Earth in this study 

is justified by its ability to provide high-resolution 

images covering the entire study area, facilitating 

the precise and efficient identification of 

landslides even in sectors where they are rare, as 

well as by the capability to visualize inaccessible 

areas and reduce the costs and logistical efforts 

associated with traditional field studies 

(Mugaruka, 2018).  

To present the inventory of landslides (sampling), 

centroids of these landslides were generated in 

ArcGIS. The density of landslide centroid points 

in an area represents the spatial distribution of 

landslides; it illustrates the unequal spatial 

distribution (Maki and Dewitte, 2014). To achieve 

this, the "Kernel Density" tool in the spatial 

analysis of ArcGIS software will be used. This 

tool calculates a magnitude per unit area from 

point or polyline features using a Kernel function 

to fit a slightly tapered surface to each point or 

polyline. 

Landslide Causative Factor 

Slope 

The inclination of the terrain significantly 

influences the spatial distribution and severity of 

landslides (Du et al., 2017; Khan et al., 2019; 

Shafique et al., 2016). The variability in terrain 

steepness was assessed using the ASTER Digital 

Elevation Model (DEM) in ArcGIS 10.5, 

employing a moving window technique based on 

the methodology proposed by Khan et al. (2019). 

The slope gradient was divided into 5 distinct 

categories: Very weak: 0 to 10°; Weak: 10 to 18°; 

Mean: 18 to 25°; High: 25 to 32°; Very high: 32 

to 66°. 

Slope Aspect 

The aspect of slope is influenced by various 

factors such as sunlight exposure, precipitation, 

wind impact, land use, and orientation of 

discontinuities (Guo et al., 2015; Xu et al., 2012), 

all of which are associated with landslide 

occurrence. The slope orientation classes were 

divided into 8 categories as follows: N (0-29 and 

>327); NE (29-68); E (68-106); SE (106-145); S 

(145-188); SW (188-235); W (235-282); NW 

(282-327). 

Elevation 

Elevation is a significant factor influencing the 

occurrence of landslides. It is interconnected with 

other factors such as precipitation, soil types, 

vegetation types, and vegetation cover. Several 

researchers utilize elevation as a factor in 

developing landslide susceptibility maps (Dai and 

Lee, 2003; Du et al., 2017; Hong et al., 2015;  

Park, 2011; Yalcin et al., 2011; Yilmaz, 2010). In 

this study, elevation variations were categorized 

into 5 classes as follows: Very low elevation: 772-

1100 m; Low elevation: 1000-1500 m; Moderate 

elevation: 1500-2000 m; High elevation: 2000-

2500 m; Very high elevation: > 2500 m. 

Proximity to Drainage 

To assess the impact of watercourses on the 

distribution of landslides, the hydrographic 

network of the study area was delineated from the 

ASTER DEM using the ArcHydro tools in 

ArcGIS. Distances from the drainage network 

were divided into 5 buffers as follows: Very close: 

0 to 74 m; Close: 74 to 155 m; Moderately close: 

155 to 244 m; Distant: 244 to 355 m; Very distant 

: 355 to 500 m. 

Vegetation Cover 

Generally, it has been demonstrated that a higher 

vegetation cover leads to a reduced frequency of 

landslides (Du et al., 2017). Vegetation cover was 

derived from Landsat 8 images using the image 

analysis tool in ArcGIS software. The vegetation 
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cover was calculated using equation (1) (Xiao & 

Moody, 2005) : NDVI = (IR - R) / (IR + R) (1). 

Where NDVI stands for Normalized Difference 

Vegetation Index, IR represents the near-infrared 

part of the electromagnetic spectrum, and R 

represents the red part of the electromagnetic 

spectrum. In this study, Landsat 8 images were 

utilized, with IR corresponding to the 5th band 

and R corresponding to the 4th band. 

Topographic Wetness Index (TWI) 

The Topographic Wetness Index (TWI) is a 

function of both slope and contributing area per 

unit orthogonal width to the flow direction. It is 

commonly used to quantify the topographic 

control of hydrological processes (Park et al., 

2013; Roy and Saha, 2019). The TWI thematic 

layer was prepared from ASTER DEM images in 

a GIS environment using the following equation 

(2) from Moore (1978), Roy and Saha, (2019) : 

TWI = ln (α / (Tanβ + C)) (2). 

Where TWI represents the Topographic Wetness 

Index, α is the cumulative upslope contributing 

area passing through a point (per unit contour 

length), β is the slope gradient (in degrees), and C 

= 0.001. 

The equation will be processed in the ArcGIS 

software, and calculations will be performed 

using the Raster Calculator tool in the Spatial 

Analysis menu as follows:  

TWI = ln ((α + 1) * Cell size) / (Tan (β * π/180) + 

0.001) (3). 

The π/180 ratio is used to convert the slope from 

degrees to radians (handled by the Raster 

Calculator). In this formula, Cell size represents 

the pixel size. 

Land Use/Land Cover 

Supervised classification of Landsat 8 images was 

conducted using the image analysis tool in 

ArcGIS software. The year 2016 was chosen as 

the only period with complete images in the Kiliba 

catchment. The classification considered 5 land 

use/land cover classes: agricultural land and 

grassland, residential areas, bare soil, woodland, 

and water bodies. For classification, pixel 

sampling for land use was performed using 

Google Earth imagery, supplemented by field 

data. Sampling was conducted beyond the 

catchment, and the generated raster was then 

clipped according to the catchment boundary. 

After classification, the confusion matrix was 

generated, and the Kappa index was derived to 

verify the accuracy of the classification (Azanga 

et al., 2016). Similar to NDVI, the Landsat images 

used were from November 26, 2015 (rainy 

season).  

Mapping Landslide Susceptibility 

Frequency Ratio (FR) model 

Several studies have used the Frequency Ratio 

(FR) approach to assess landslide susceptibility 

(Hidayat et al., 2019; Park et al., 2013; Rabby and 

Li, 2020; Silalahi et al., 2019; Solaimani et al., 

2013). It is based on observation for the 

preparation of general landslide susceptibility 

maps. The FR value for each class can be 

calculated using Equation 4:  

FRj = 
N𝑖𝑗/N𝑡𝑜𝑡𝑎𝑙

A𝑖𝑗/𝐴𝑡𝑜𝑡𝑎𝑙
     (4) 

Where, Nij = the number of landslide pixels in the 

jth subclass of factor i; Ntotal = the total number of 

landslide pixels in the study area; Aij = the total 

number of pixels in the jth subclass of factor i; Atotal 

= the total number of pixels in the study area. 

The distribution and frequency ratio analyses 

were not conducted while considering portions of 

the study area where landslide occurrences are 

impossible (Mugaruka, 2018); that is, the surface 

covered by flat land and water bodies. After 

determining the FR values for all classes of each 

factor, a Landslide Susceptibility Index (LSI) was 

derived and applied in the GIS by summing up the 

FR values of all factors according to Equation (5): 

LSI = FR1 + FR2 + FR3 +…+ FRn (5) 

Where, LSI = the landslide susceptibility index at 

each pixel in the study area; FR = the frequency 

ratio of each factor class at the pixel; n = the total 

number of factors. 

Validation of the Prediction Model Using the 

AUC Approach 
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All conditioning factors were evaluated using the 

Area Under Curve (AUC) approach. AUC is a 

type of statistical accuracy for prediction models 

(probabilities) in the assessment or analysis of 

natural disaster occurrences. The AUC value 

defines conditioning factors that would be used in 

landslide susceptibility mapping using the FR 

method. The higher the AUC value (if the 

threshold definition achieves the maximum value 

of 1), the higher the statistical accuracy of the 

model, which describes the prediction threshold 

independently (Lepore et al., 2012; Mandal and 

Mandal, 2018; Mohammady et al., 2012; 

Pimiento, 2010; Rossi and Reichenbach, 2016; 

Silalahi et al., 2019; Xu et al., 2012; Yilmaz, 

2010). The AUC curve was plotted with the 

cumulative percentages of predicted landslides 

(on the x-axis) and the cumulative percentages of 

observed landslides (on the y-axis). 

RESULTS 

Landslide Inventory 

The density map effectively illustrates the 

inequality in the spatial distribution of landslides 

(Figure 2). A total of 106 landslides were 

inventoried, with 75% utilized in the model and 

25% in model validation. The spatial distribution 

shows densities ranging from 0 to 11.25 landslides 

per km², with an average of 1.9 landslides per km². 

Considering the number of pixels per landslide 

density class exceeding 0.5 landslides per km², it 

is found that the highest density class, 8 to 11.5 

landslides per km², represents a proportion of 

5.1%, while the lowest density class, 0.5 to 1.5 

landslides per km², represents a proportion of 

55.6%. 

Figure 2: Landslide density 

 

From a spatial distribution standpoint, landslides 

are more concentrated towards the southern part 

of the catchment, with the highest density 

reaching up to 11.25 landslides per km², followed 

by the northern part where the density is relatively 

moderate, reaching up to 3 landslides per km². 

Landslides are rare towards the western part, 

which cannot exceed 1 landslide per km², while 

the density becomes zero towards the eastern part 

as it is occupied by the Ruzizi plain. 

Spatial Analysis of Landslide Distribution 

According to Different Classes within the 

Factors 

The distribution of landslides according to slope 

classes shows the maximum value in the high 
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slope class, accounting for 36.9% of the total 

triggering area for landslides. The intersection of 

the curve, indicating the critical threshold of the 

slope which lies beyond 25° (Figure 3a). This 

threshold is the angle beyond which the landslide 

frequency increases while the slope of the study 

area decreases (Larsen and Montgomery, 2012; 

Mugaruka, 2018). The distribution of landslides 

according to slope aspect shows a predominance 

along the NW-SE orientation. This means that the 

majority of landslide triggering areas are located 

on NW-facing slopes, accounting for 23.6% of the 

total area, and SE-facing slopes, accounting for 

20.6% of the total area (Figure 3b). 

The critical threshold lies beyond the "low 

altitude" class, i.e., beyond 1500 m altitude. The 

mode of the distribution belongs to the "medium 

altitude" class, accounting for 49.8% of the total 

triggering areas for landslides. The "High 

altitude" class also holds a proportion close to the 

mode (45.9%), indicating that the two classes 

(medium and high altitudes) alone hold over 95% 

of the triggering area for landslides (Figure 3c). 

The majority (32.2%) of these landslides (their 

triggering areas) are located at a distance between 

155 and 244 m from a drainage channel and on 

bare terrain (54% of the total triggering area), 

(Figure 3d). For the topographic wetness index 

(TWI), the highest proportion of landslides is 

located in the 2.284-5.048 class, accounting for 

43.8%. The frequency of landslides as well as the 

area of TWI classes decrease together, becoming 

null in the last class (Figure 3e). The critical 

threshold for triggering in relation to the NDVI 

index is approximately 0.18 (Figure 3f), 

belonging to the same class as the peak of the 

triggering area distribution. This indicates a 

strong correlation between landslide frequency in 

the triggering area and in the non-triggering area. 

Landslides are rare in forested and built-up areas 

(Figure 3g). 

Frequency Ratios of Landslides in Different 

Classes 

Classes with a frequency ratio (FR) greater than 1 

are susceptible to landslides (Kannan et al., 2013; 

Kirschbaum et al., 2012; Lee and Pradhan, 2007; 

Mugaruka, 2018). Thus, referring to the critical 

FR value, susceptibility in relation to slope begins 

to manifest from slopes exceeding 25°, without 

showing a decrease until reaching the maximum 

slope of the catchment. As slopes become steeper, 

the frequency ratios become higher (Figure 4a). 

Therefore, the catchment is more susceptible to 

landslides in the classes of steep and very steep 

slopes, while noting that moderate slopes also 

exhibit frequencies close to the threshold. 

Regarding slope aspect, NW-facing slopes show a 

higher susceptibility than all other aspects, with 

FR values well above the critical threshold 

(Figure 4b). Susceptibility related to altitude 

remains concentrated between high altitudes and 

the upper limit of low altitude. The highest FR 

values are found in the medium altitude range. At 

low and very high altitudes, FR values are nearly 

zero (Figure 4c). Susceptibility appears from 155 

m from a drainage channel onwards.  

Comparing the distribution graph in landslide 

triggering areas/non-triggering areas with that of 

frequency ratios related to distance to drainage, it 

can be observed that landslides are rare in the 355-

499 m class despite having the highest frequency 

ratio value (Figure 4d).The topographic wetness 

index presents FR values mostly below the critical 

threshold. Only one class has a value exceeding 

the threshold and with an FR very close to 1 

(Figure 4e). For NDVI, the highest FR values are 

located where NDVI is lower. The peak is found 

in the 0-10% NDVI class, and values decrease 

with increasing NDVI. FR values remain almost 

identical and close to the critical threshold (1) in 

locations with NDVI greater than 10% up to 25%, 

before falling below 1. Locations with NDVI 

exceeding 25% and 50% are not susceptible to 

landslides as FR values are almost zero (Figure 

4f). Only soils affected by agriculture and grassy 

vegetation, as well as bare land, exhibit 

susceptibilities exceeding the threshold (Figure 

4g).
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Figure 3: Distribution of factors in the study area (non-landslide zone) and in landslides (landslide zone): a: slope; b: slope orientation; c: altitude; d: 

distance to drainage; e: topographic wetness index; f: NDVI (Normalized Difference Vegetation Index); g: land use 
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Figure 4: Distribution of frequency ratios (FR) of landslides in the various classes of factors: a: slopes; b: slope orientation; c: altitude; d: distance to 

drainage; e: topographic wetness index; f: NDVI; g: land use 
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Landslide Susceptibility Index and Model 

Validation 

The landslide susceptibility index (LSI) gradient 

indicates a variation from 0 to 14. It has been 

reclassified and subdivided into 5 susceptibility 

classes (levels) as follows (Figure 5): Very Low: 

0 to 3; Low: 3-5; Moderate: 5-7; High: 7 to 9; 

Very High: 9 to 14. Model validation using the 

AUC approach indicates a reliability level of 

0.7219, which corresponds to 72.2% accuracy in 

prediction (Figure 6). 

Figure 5: Susceptibility to the landslide in the Kiliba catchment claimed according to the different 

LSI levels 

 

Figure 6: Validation curve according to the AUC approach, with the model reliability of 72.2% 
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considered lower than that of Jacobs et al. (2017). 

Examination of the slopes of the hillsides where 

landslides occur reveals a critical threshold 

around 25°. This value differs from that found by 

Mugaruka (2018) in the catchment of Ruzizi River 

(18.9°), but is similar to that found by  Maki and 

Dewitte (2014) in the western rift of Lake Kivu 

(25°) and higher than that found by Migombano 

(2011) in Bukavu. This value is consistent with 

the findings of Persichillo et al. (2017), showing 

that slopes greater than 25°, combined with socio-

economic factors, are major triggers of landslides 

in Italy. 

Regarding altitude, susceptibility begins to 

manifest itself from the upper limit of the low-

altitude class (about 1500 m), remains high at 

middle altitudes, and decreases at high altitudes 

around 2500 m. The steep slopes at middle 

altitudes, associated with a higher drainage 

density, explain this prevalence. The altitude-

triggered thresholds in the Kiliba catchment, 

found by Mugaruka (2018) almost coincide with 

these observations. Regarding land use, landslides 

are more frequent on bare soil, thens on soil 

covered with grass and cultivated vegetation. 

Spatial analysis of the landslide susceptibility map 

shows a correlation between slope, altitude, 

NDVI, land cover, and landslide susceptibility. 

Landslides are sensitive to slope, soil exposure, 

and low NDVI values. Furthermore, the middle 

altitude class exhibits steeper slopes, a high 

proportion of bare soil, and grassland and 

cultivated vegetation (Figure 7). 

Figure 7: Landslides in the Kiliba catchment: located on steep slopes, in the middle altitude class, 

in the land class affected by grassland and agriculture. 

 

This observation aligns well with that made by 

Broothaerts et al.(2012), who demonstrated that 

deforestation for agricultural purposes and the 

transition from subsistence farming to intensive 

agriculture have led to landslide risks in the 

catchment of Gilgel Gibe catchment in southwest 

Ethiopia, as these activities destabilize the land 

surface. Similar observations were made in 

populated areas of Uganda by Knapen et al. 

(2006) who showed that agriculture, as the 

primary land use class, is one of the main factors 

influencing landslide risks. The results of the 

research conducted by (Zamukulu, 2020) on Idjwi 

Island showed similarity with the findings in the 

catchment of Kiliba catchment, our study area. It 

was found that in the island territory of Idjwi, 

areas occupied by fields and bare soil are most 

susceptible to landslides. 

CONCLUSION  

The study conducted in the catchment of Kiliba 

catchment identified landslide susceptibility 

factors. The results revealed an uneven spatial 

distribution of landslides, with a higher 
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concentration in the southern part of the 

catchment, on steep slopes and at moderate 

altitudes. The correlation between slope, altitude, 

NDVI, and land cover was highlighted, 

emphasizing the importance of these variables in 

landslide susceptibility modelling. Critical 

landslide triggering thresholds were identified, 

notably a slope greater than 25° and moderate 

altitudes around 1500 m. These thresholds 

corresponded to those found in other similar 

studies conducted in geographically comparable 

regions. Additionally, the impact of human 

activity, particularly agriculture and deforestation, 

on increasing landslide risks was emphasized, 

consistent with previous observations in other 

areas. Finally, validation of the susceptibility 

model showed acceptable accuracy, with a 

reliability level of 72.2%, reinforcing the 

robustness of the results. These conclusions 

provide important information for landslide risk 

management in the catchment of Kiliba 

catchment, highlighting the most vulnerable areas 

and identifying key factors to consider in 

mitigation and prevention strategies. 
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