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ABSTRACT 

Water quality is one of the sensitive global environmental issues, and it is 

broadly defined as the biological, chemical, and physical characteristics of water 

to be maintained to meet the needs of various water usages including drinking, 

irrigation and as an indicators of ecosystems health. It is often measured by a 

number of parameters, i.e., concentrations of chlorophyll-a, turbidity, total 

suspended matter, dissolved oxygen, nutrients, and harmful algae, etc. 

Laboratory analysis is used to measure and analyse water quality parameter, 

however, this approach is expensive, labour-intensive, time-consuming, and not 

suitable for large-scale analysis, while remote sensing methods is a cost 

effective and accurate methods of water quality monitoring with a high spatial 

and temporal resolution for large area of waterbodies. To this end, this review 

focused on novel findings of water quality evaluation using remote sensing 

method, and the result revealed that water quality parameters which are optically 

active (Chl-a, SDD, Water temperature, Water Turbidity, Total Suspended 

Matter, Electrical conductivity, Sea Surface Salinity and CDOM), and optically 

non active (DO, COD, BOD, TN, Ammonia Nitrogen and TP) can be retrieved 

by remote sensing technique. The resolution of the most used multi spectral and 

hyper spectral sensors of both satellite and non-satellite-born data sources are 

summarized in an effort to select for further research. Moreover, this review 

points out the most important retrieval algorisms (analytical, empirical, and 

artificial intelligence) have used in retrieving the water quality parameters. As a 

whole, remote sensing technique is a permissible method for water quality 

valuation across the world in its spatio-temporal coverage, accuracy, and its cost 

effectiveness. 
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INTRODUCTION 

Monitoring water quality (WQ) in aquatic 

environments is critical for the proper 

management of water resources to guarantee a 

sustainable use (Pizani1 and Maillard, 2022). It is 

also a means to get an insight on the dynamics of 

the surrounding human activities (Odermatt et al., 

2008). The quality of these environments can be 

determined through their physical, chemical, and 

biological characteristics which will be addressed 

as WQ “parameters” (Gholizadeh et al.,2016). 

water quality parameters can be analysing in 

laboratory, and it also offers high accuracy, but it 

is expensive, labour-intensive, time-consuming, 

and not suitable for large-scale analysis (Pizani1 

and Maillard, 2022). Moreover, the conventional 

methods are not easily able to identify the spatio- 

temporal variations in water quality which is vital 

for comprehensive assessment of water quality 

(Liu et al., 2003). 

With advancement of remote sensing techniques, 

water quality evaluation is possible in more 

effective way for large scale water bodies regions 

that suffer from qualitative data problems due to 

conventional methods. In hence, remote sensed 

data have empowered the abilities of researchers 

and water managers to monitor water quality in 

more effective way. These techniques involve the 

use of satellite imagery, aerial photography, and 

other technology to collect data about water 

bodies from a distance. The method has been used 

since the 1970s and is still often used to obtain 

water quality indicators in water quality 

assessments in the modern world (Giardino et al., 

2014).Various parameters such as chlorophyll-a 

concentration, water turbidity, and total 

suspended solids can be retrieved using satellite 

imagery. This is done by analysing the reflectance 

properties of the water surface, as different 

substances exhibit unique spectral signatures. 

Given the importance of remote sensing 

techniques for water quality estimation, reviewing 

remote sensing-based water quality estimation 

techniques is very critical for sustainable 

management of water resources. Hence, this 

review summarizes different information related 

to remote sensing sensors used for water quality 

retrieval, water quality parameters, and the mainly 

used retrieval algorithms for specific water quality 

variables. 

METHODOLOGY 

Published papers on remote sensing-based water 

quality evaluation were searched in English 

language on different sources like Web of Science 

and Scopus using the terms “water quality 

evaluation” and “remote sensing” as topic, and 

then papers on evaluation of water quality using 

remote sensing methods have been collected, and 

then a detailed check was done by scanning the 

collected papers. Then after, water quality 

parameters are identified using selected papers, 

and the type of sensors, retrieval algorisms and 

selected water quality parameters were also 

tabulated using the obtained information. 

FINDINGS AND DISCUSSION 

Importance of Remote Sensing for Water 

Quality Evaluation 

Water is made up of molecules that contain a wide 

variety of organic and inorganic, living and non-

living, suspended solids and dissolved 

components. While a larger portion of incident 

solar radiation or other light penetrates the water 

column itself and begins to interact with both 

suspended and dissolved matter within the water, 

the remaining portion is reflected off the surface 

of the water body as a remotely sensed signal 

(Figure 1) (Kirk, 1994). According to Schott 

(2007), surface reflectance is the ratio of light 

leaving the water's surface upward to sunlight 

entering the surface. According to Chen et al. 

(2015) water quality can be estimated by 

calculating the concentrations of constituted 

matter based on the spectrum of light reflected and 

scattered from the water column determined by 

remote sensing. To evaluate the optical properties 

of the water, the "atmosphere correction" 
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approach must be applied in order to take the 

atmosphere and sun glare into consideration. 

Figure 1: Diagram showing the electromagnetic spectrum's passage between a sensor, a body of 

water, and the Sun    

 
Source: Adopted from Batina and Andrija (2023) 

The Potential of Remote Sensing for Water 

Quality Monitoring  

Remote sensing-based water quality monitoring 

techniques began in the early 1970s, and offer a 

clear possibility to solve the shortcomings of 

traditional water quality monitoring (Bazel et al., 

2021). The development of new remote sensing 

techniques has been aided by the increased 

interest in creating long-term environmental 

monitoring programs. This is primarily due to the 

technology's capacity to offer a perspective that 

cannot be obtained by any other means (Haibo et 

al., 2022). The advancement of remote sensing 

techniques, particularly the introduction of hyper-

resolution satellites, has made possible for long-

term and large-scale water quality monitoring 

with quick way (Haibo et al., 2022). The use of 

remotely sensed data in aquatic ecosystem 

monitoring has taken numerous forms, including 

the measurement of river system flow velocity, 

hydrologic recharge, volumetric storage 

fluctuation rates, and hydrologic connectivity 

(Pavelsky and Smith, 2009). For the purpose of 

researching water quality trends and the possible 

effects of changing land use and land cover on 

water quality, a number of remote sensing projects 

offer historical data. Moreover, future water 

quality monitoring will make greater use of 

remote sensing techniques due to ongoing 

advancements in satellite and sensor technologies 

(Dekker and Hestir, 2012).  

Water Quality Parameters  

There are three types of water indicators included 

in a conventional water quality monitoring 

system: chemical indices (such as pH, DO, COD, 

BOD, TOC and, heavy metal ion etc.), physical 

indices (such as temperature, turbidity and 

electrical conductivity), and microbiological 

indices (such as total bacteria and total coli 
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forms). Water quality indicators can be divided 

into optically active and non-active factors based 

on remote sensing techniques (Table 1). 

Optically Active Constituents 

Optically active constituents (OACs) are 

substances that can affect the polarization or 

rotation of light passing through water, and they 

include chlorophyll a (and other phytoplankton 

pigments), suspended particulate matter, turbidity 

and CDOM which affect the radioactive transfer 

process of the spectrum of light. 

Chlorophyll-A 

Chlorophyll-a is a type of chlorophyll pigment 

found in plants, algae, and cyanobacteria. In 

water, chlorophyll-a can be found in aquatic 

plants and algae, where it helps them to capture 

and use light energy for photosynthesis (Kutser, 

2009). High concentrations of Chlorophyll-a in 

water can indicate eutrophication, a process in 

which excess nutrients such as nitrogen and 

phosphorus cause excessive growth of 

phytoplankton. This can lead to algae blooms, 

oxygen depletion, and ecosystem disruptions 

(Zhou et al., 2018). Hence, monitoring 

Chlorophyll-a levels in water bodies can help 

researchers and environmental authorities to 

assess water quality, identify sources of pollution, 

and implement management strategies to protect 

aquatic ecosystems. In water bodies with low 

phytoplankton biomass levels, the chlorophyll-a 

spectrum is characterized by a sun-induced 

fluorescence peak around 680 nm. This peak is 

typically associated with the presence of 

phytoplankton containing chlorophyll-a, which is 

a pigment involved in photosynthesis and gives 

plants and algae their green colour (Gower, 2004). 

In eutrophic water bodies with high biomass 

levels, the fluorescence signal of Chlorophyll-a 

can be difficult to detect due to the presence of 

absorption features and backscatter peaks at 

specific wavelengths. Specifically, these 

absorption features and backscatter peaks are 

centered at 665 nm and 710 nm, respectively, 

which can interfere with the accurate 

measurement of Chlorophyll-a levels using 

traditional spectrophotometry methods (Matthews 

et al., 2012). To address this challenge, 

researchers have developed alternative methods 

that utilize the ratio between these two 

wavelengths (665 nm and 710 nm) to accurately 

determine the amount of Chlorophyll-a present in 

the water. The Band ratio model, first order 

differential model (Rundquist et al., 1996), three-

band model (Gitelson et al., 2008), and machine 

learning model (an empirical neural network) can 

all be used to determine the concentration of Chl–

a.  

Total Suspended Matter 

Total suspended matter (TSM) is the 

concentration of solid particles that are suspended 

in water bodies, such as rivers, lakes, or oceans. 

These particles can include silt, clay, organic 

matter, and other debris that remains suspended in 

the water column rather than settling to the bottom 

(Hou et al., 2017). TSM levels are often used as 

an indicator of water quality, as high 

concentrations can affect the clarity of the water, 

interfere with light penetration, and affect aquatic 

organisms. According to the available literatures, 

Total suspended matter (TSM) concentrations 

estimated from remote sensing data have been 

correlated with various optically inactive water 

quality indices in order to estimate concentrations 

of phosphorus, mercury, and other metals in water 

bodies. Therefore, remote sensing technique 

involves using satellite or aerial imagery to 

remotely sense the levels of TSM present in the 

water, which can serve as a proxy for other water 

quality parameters and pollutants (Chen et al., 

2015).   

Turbidity 

Turbidity is an optically active water quality 

parameter that indicates the presence of particles 

in the water column that can provoke the 

scattering or absorption of light (Avdan et al., 

2019). The source of particles can be matter of 

phytoplanktonic origin (Sabat-Tomala et al., 

2018) and materials of mineral origin from soil 

erosion (Menken et al., 2006).  High levels of 

turbidity have an impact on clarity of the water, 
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interfere with light penetration, and affect aquatic 

organisms (Quang et al. 2017). Indeed, turbidity 

detection assumes great significant importance for 

aquatic ecosystems management. Because, it can 

scatter and absorb light, affecting the penetration 

of sunlight into the water column (Dekker and 

Hestir, 2012). Reflectance at 700 nm is commonly 

used to derive turbidity from remotely sensed 

signals. This is because the reflectance at this 

specific wavelength is sensitive to the presence of 

suspended particles and can be a good indicator of 

turbidity levels in water bodies (Hicks et al., 

2013). These turbidity measurements can provide 

important information about water quality, 

sediment transport, and ecological dynamics. 

Literature indicates that a good accuracy in 

turbidity prediction is possible using visible bands 

(Liu et al., 2019) and the combination of visible 

and infrared bands (Alparslan et al. 2010). Good 

results are described with both empirical and 

analytical models but the choice of spectral 

regions for the development of turbidity 

estimation algorithms may also be dependent on 

the season, especially in eutrophic environments 

(Dekker and Hestir, 2012). 

Secchi Disk Depth (SDD)   

The water transparency assessment represents an 

important factor in the monitoring and 

management of water resources. Remote sensing 

technology allows for the collection of 

information about water transparency over large 

spatial areas in a cost-effective and non-invasive 

manner. By analyzing data obtained from 

satellites, drones, or other remote sensing 

platforms, researchers can assess changes in water 

transparency levels in lakes, rivers, coastal areas, 

and other water bodies over time (Lee et al., 

2015).Various remote sensing techniques can be 

used to estimate water transparency, including 

measuring the reflectance of specific wavelengths 

of light, such as near-infrared or red spectrum 

bands, or using algorithms to derive water 

transparency values from satellite imagery. This 

information is crucial for understanding the health 

of water bodies, managing water resources, and 

implementing conservation efforts to protect and 

restore aquatic ecosystems (Liu et al., 2019). 

Studies that measure SDD from optical sensors 

like MSI and OLCI sensors have also a relatively 

high level of success in part because SDD is a 

direct consequence of all optical characteristics of 

water and the elements it contains (Underberg et 

al. 2020). The literature that is currently available 

demonstrated that SDD can be estimated using 

visual spectral bands and various band ratios 

(Alparslan et al. 2010).  

Water Temperature 

Since temperature controls chemical, biological, 

and physical processes in water, water 

temperature (WT) is a crucial parameter for both 

air-water interactions and the physical and 

biological activities that take place in the water. 

Because of this, WT is one of the one of the key 

indicators of the health of aquatic ecosystem 

(Gholizadeh et al., 2016). The solubility and 

consequent availability of different chemical 

constituents in water are influenced by water 

temperature. The most significant impact of this 

parameter is on the concentrations of dissolved 

oxygen in water, since rising water temperatures 

cause a decrease in oxygen solubility. Remote 

sensing can provide accurate surface WT 

measurements, and water temperature parameter 

retrieval using remote sensing techniques has 

been an active area of research in recent years. 

Satellite-based remote sensing platforms 

equipped with thermal sensors can provide 

valuable information on water surface 

temperature over large areas and at regular 

intervals. These sensors measure the emitted 

thermal radiation from the water surface, which is 

correlated with water temperature. To retrieve 

water temperature from remote sensing data, 

various algorithms are employed that utilize the 

relationship between surface temperature and the 

captured radiance values. These algorithms 

incorporate atmospheric correction, which 

accounts for the interference of atmospheric 

conditions on the thermal signals (Batina and 

Krtalic, 2023). These data are crucial for 

understanding the thermal dynamics of aquatic 

ecosystems, assessing the impacts of climate 
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change, and managing water resources 

effectively.   

Coloured Dissolved Organic Matter (CDOM) 

Coloured Dissolved Organic Matter (CDOM) 

refers to the fraction of dissolved organic material 

in water that absorbs light in the visible spectral 

range, giving it a yellow to brown colour, and it is 

a key component of the dissolved organic carbon 

(DOC) pool in aquatic ecosystems and plays a 

significant role in water quality, biogeochemical 

processes, and the optical properties of water. 

(Chen et al., 2017). DOC can originate from either 

an autochthonous source, which is derived from 

algae or aquatic plants that break down in surface 

water, or an allochthonous source, which is 

derived from sources outside the system, such as 

soils or terrestrial plants (Kritzber et al. 2004). 

According to Coelho et al. (2017), CDOM is a 

significant WQ indicator that affects the water's 

potability (Chen et al., 2017). Its ability to absorb 

solar radiation also serves as an indirect defence 

against pathogenic organisms by causing 

photochemical reactions that happen when light 

and water interact (Kutser et al., 2005). The 

presence of CDOM in an aquatic environment can 

provoke its brownification, a phenomenon 

causing the water to acquire a yellow/brown tint 

as a response to the high concentration of organic 

matter. Remote sensing techniques can be used to 

estimate CDOM concentrations in water bodies 

by measuring the light absorption properties of the 

water. CDOM absorbs light predominantly in the 

blue wavelength spectrum, so analysing remote 

sensing data in this range can provide information 

on the distribution and concentrations of CDOM 

in aquatic environments (Carvalho et al., 2013). 

Monitoring CDOM concentrations through 

remote sensing can help scientists better 

understand the dynamics of organic matter 

cycling in aquatic ecosystems, assess water 

quality parameters, and study the impacts of 

climate change and human activities on water 

bodies. In turn, this information can support 

resource management decisions, biodiversity 

conservation efforts, and the development of 

strategies to protect and restore water quality in 

lakes, rivers, and coastal areas. The phenomenon 

can negatively affect the quality of the water by 

changing the amount of nutrients, the pH, the 

thermal stratification, and the whole food chain. 

Unlike TSM or chl-a, there are no recognized 

specific spectral band associated with CDOM. 

However, the visible absorption bands (blue and 

green) associated with other bands (red edge, 

NIR) is important to increase chances of 

producing good estimates (Hestir et al., 2015). 

Optically Inactive Constituents    

In addition to optically active water quality 

parameters, there are optically inactive water 

constituents that can affect the optical properties 

of water bodies. Optically inactive water quality 

parameters do not directly affect the reflectance or 

absorption of light in water (Gholizadeh et al., 

2016). According to the same author, these 

constituents do not absorb or scatter light in the 

visible and ultraviolet spectrum, but they can still 

impact the overall optical characteristics of water. 

Some examples of optically inactive water 

constituents include inorganic nutrients like 

nitrates, phosphates, and silicates can impact the 

growth of algae and other aquatic plants, altering 

water clarity and the availability of light for 

photosynthesis. In addition to inorganic nutrients, 

minerals and dissolved salts such as calcium 

carbonate or gypsum, and microorganisms like 

bacteria, viruses, and other microorganisms in 

water are typically optically inactive but can 

influence water quality and ecosystem health. 

Remote sensing techniques can help scientists 

study the relationships between optically inactive 

and optically active water constituents by 

measuring the spectral reflectance properties of 

the water column and developing models to 

estimate the concentrations of different 

constituents (Isenstein and Park, 2014). By 

monitoring these relationships over time and 

space, researchers can gain insights into the 

sources and dynamics of organic and inorganic 

matter in aquatic environments and assess the 

impacts of environmental changes on water 

quality and ecosystem health.  
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Estimating the concentration of optically inactive 

constituents in water using retrieval algorithms 

based on relationships with optically active water 

constituents is a common approach in remote 

sensing studies. According to Song et al. (2011) 

and Yang et al. (2012), there is a strong relation 

between the concentrations of TN and TP and the 

optically active water quality measures, such as 

TSS, SDD and chl-a. 

Table 1: The most often used remote sensing technique to measure the qualitative characteristics 

of water 

Water quality parameter Abbreviation Units Optical activity 

Chlorophyll-a Chl-a Mg/l active 

Secchi Disk depth SDD M » 

Water temperature WT 0c » 

Turbidity TUR NTU » 

Total amount of Suspended Matter  TSM Mg/l » 

Electrical conductivity EC  » 

Sea Surface Salinity SSS PSU » 

Coloured Dissolved Organic Matter CDOM Mg/l » 

Total amount of Organic Carbon TOC » » 

Dissolved amount of Oxygen DO » inactive 

Chemical Oxygen Demand  COD » » 

Biochemical Oxygen Demand  BOD » » 

Total of Nitrogen  TN » » 

Ammonia  NH3-N » » 

Total of Phosphorus  TP » » 

Soluble reactive phosphorus PO4 » » 

 

Available Data Sources for Remote Sensing 

Water Quality Retrieval 

Observing sensors can be broadly classified into 

two groups according to the platforms they are 

located on. Airborne sensors are mounted on a 

platform inside the Earth's atmosphere (such as a 

boat, balloon, helicopter, or aircraft), whereas 

spaceborne sensors are delivered to areas outside 

of the atmosphere by a spacecraft or satellite. 

These sensors use different technologies to gather 

data on various indicators of water quality, such 

as chlorophyll-a concentrations, turbidity, and 

suspended sediment levels. Understanding of 

various sensors' characteristics is important for 

selecting the right sensor for the specific studies. 

Indeed, a variety of airborne and satellite-based 

remote sensing systems that are frequently 

employed in water quality s are listed, along with 

their spectral characteristics (Table 2). 

 

 

 

Satellite-Borne Remote Sensing Data 

Multispectral Data 

Multispectral data typically consists of a few 

discreet spectral bands (usually ranging from 3 to 

30 bands) across the visible and near-infrared 

spectrum. These bands can be used to estimate 

water quality parameters such as chlorophyll-a 

concentration, turbidity, and suspended solids. By 

analysing the reflectance values at specific bands, 

mathematical models can be developed to 

correlate these values with the desired water 

quality parameters. Multispectral data such as 

MSS, TM, ETM+, OLI, ESA's Sentinel-2, 

ENVISAT MERIS, France's SPOT satellite data, 

NOAA's AVHRR, and China's GF series are 

accessible for remote sensing water quality 

retrieval (Batur and Maktav, 2018). For example, 

Landsat series and sentinel data are most used 

multispectral Data for water quality evaluation 

due to its fine resolution (Vakili and Amanollahi, 

2019; Wang et al., 2019). 
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Hyperspectral Data 

Hyperspectral data provides a much higher 

spectral resolution than multispectral data, 

typically consisting of hundreds of narrow 

contiguous bands across the electromagnetic 

spectrum. This detailed spectral information 

allows for more accurate and precise retrieval of 

water quality parameters. Hyperspectral data can 

be used to estimate specific water quality 

parameters such as chlorophyll-a, dissolved 

organic matter, and mineral content (Yang et al., 

2022). The ability of hyper spectral data to define 

surface features with a higher spectral resolution 

led to recent scholars can retrieve water quality 

parameters with the application of hyper spectral 

imagery (Hestir et al., 2015).     

Table 2: Satellites that can be used to remotely sense and retrieve water quality data  

 Satellite Sensor Launch 

Date 

Spatial 

resolution (m) 

Spectral 

Resolution Band 

Temporal 

Resolution (Day) 

M
u

lt
i-

sp
ec

tr
a
l 

NIMBUS-7 CZCS 1978.10 825 6 6 

Landsat-5/7/8/9 1984-2020 30 5 16 

SeaWiFS 1997.8 1130 8 16 

NOAA-16AVHRR 2000.10 1100-4000 6 9 

EO-1 AL1 2000.11 10 9 16 

WorldView-2/3 2009/2014 1.85/1.24 8 1.1 

MERIS 2002.3 300-1200 15 1 

MODIS 1900.12 250-500-1000 9 0.5 

Landsat-8 OLI 2013.2 30 7 16 

Sentinel-2 A 2015 10 13 5 

Sentinel-3A/ OLCI 2016 300-1600 21 27 

Sentinel-2 B 2017 10 13 10 

Sentinel-3B 2018 300-1200 21 4 

H
y
p

er
-s

p
ec

tr
a
l 

HY-1A COCTS 2002.5 1100 10 3 

PROBA CHRIS 2001.10 18-36 19 7 

Hyperion 2000.11 30 42 16 

HJ-1A HSI 2008.9 100 128 4 

MICO 2009.9 100 128 10 

VIRS 2011.10 375-750 22 0.5 

OHS 2018.4 10 32 2 

GFS-AHSI 2018.5 30 330 3 

ZYI-02D 2018.9 30 166 3 

ZK-VNR-FPG4S0 / 0.09 270 / 

Gala Sky-mini / 0.04 176 / 

 

Non-Satellite Remote Sensing Data 

Non-satellite remote sensing techniques can be 

used for water quality parameter retrieval in 

addition to satellite remote sensing data. By using 

sensors mounted on aircraft or drones, airborne 

remote sensing can provide detailed spatial 

information and better temporal resolution 

compared to satellites. With the advancement of 

UAV technology, light and compact UAV 

systems with multispectral cameras, high 

spectrometers, infrared sensors, and Lidars are 

useful and efficient for managing water 

management (Ouma et al., 2018). Airborne 

photography can be used to collect water quality 

parameters using methods and algorithms that are 

similar to those used in satellite remote sensing, 

such as spectral analysis and mathematical 

models. For instance, the 48-channel Compact 

Airborne Spectrographic Imager (CASI) from 

Canada utilized for monitoring aquatic 

environment. When combined, shortwave 

infrared (SWIR) and near infrared (NIR) can 

enhance applications, even though they are 

primarily utilized for turbid and clear waters 

separately (Liu et al., 2019). In addition, ground-

based remote sensing techniques involve 

collecting data from the water surface or near-
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shore areas using handheld sensors and 

spectroradiometers can be used for monitoring 

water quality parameters in specific locations. 

They are particularly useful for studying near-

shore environments, littoral zones, and small 

water bodies. Ground-based remote sensing data 

can be processed using similar techniques as 

satellite or airborne data for water quality 

parameter retrieval. 

Water quality retrieval algorithms and 

modelling approaches  

Retrieval algorithms can be created using a variety 

of methods, such as radiative transfer theory-

based spectrum additive models or 

straightforward empirical relationships between 

radiant reflectance at particular wavelengths and 

in situ samples (Politi et al., 2015). The basic 

principle of the inversion of water quality by 

remote sensing approaches is the combination of 

in situ data from water quality monitoring with 

similar remote sensing imagery for model 

establishment. Retrieval techniques are used to 

determine the concentration of a water quality 

parameter from the spectrum of water-leaving 

radiance that was captured by the sensor. The 

parameters of water quality can be extracted from 

remote sensing data using a variety of modelling 

techniques and algorithms. Here are some 

commonly employed methods (Table 4).  

Empirical Models 

Empirical algorithms are developed by the 

construction of statistical correlations between 

water quality parameters and remotely sensed 

data. Empirical methods require in situ data on 

each water quality indicator in order to build a 

statistical relationship between the reflectance of 

spectral bands and the concentration of 

constituents at the moment of picture acquisition 

(Olmanson et al., 2015). The training dataset used 

by these algorithms typically consists of remote 

sensing data that correlates with field observations 

of water quality indicators. The program then 

makes use of this training dataset to establish a 

mathematical connection between the goal water 

quality metric and the observed spectral 

signatures. Then, the inversion method is 

developed utilizing statistical analyses between 

the water quality indicators and specific 

characteristic bands or band combinations (Cheng 

et al., 2015, Zhou). Apart from exclusively 

empirical methods, there exists an additional 

category of empirical models known as Semi-

empirical methods, which integrate both 

analytical and empirical techniques (Keller, 

2001). Measured and statistical spectrum analysis 

is necessary for semi-empirical models (Li, 2009). 

The semi-empirical approach combines observed 

parameter concentration with waterbody 

reflectivity, improving the parameter's spectrum 

characteristics and reducing optical parameter 

noise while also offering physical significance 

and ease of use (Keller, 2001). Even if a 

significant quantity of in situ measurable data 

limits the temporal and spatial application of 

semi-empirical models, they are nevertheless 

more generalizable than fully empirical ones. As 

a result, they are frequently used to evaluate 

parameters like Chl-α, TSM, CDOM, SDD, and 

TUR (Hunter et al., 2010; Yang et al., 2022). 

Analytical Methods 

Analytical algorithms are mathematical models or 

equations that directly relate the spectral 

reflectance properties of water to the 

concentrations of optically active constituents by 

simulating light propagation in the atmosphere 

and water bodies using radiation transmission 

models and bio-optical models (Yang et al., 

2022). These algorithms are typically based on 

empirical relationships derived from field 

measurements and calibration. According to 

Batina and Krtalic (2023), the analytical 

technique, also known as the physical method, 

requires theoretical analyses of spectrum data 

rather than statistical studies like the empirical and 

semi-empirical methods. With the use of 

extensive in situ data and well-established 

parameter properties, the analytical method's 

physical mechanism can concurrently identify all 

water parameters (Gholizadeh et al., 2016). Its 

portability is also good, but there are obstacles to 

its widespread adoption (Keller, 2001) and it 
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needs a very accurate measuring instrument. In 

models that are strictly analytical, the inverse 

equation is parameterized. Thus, semi-analytical 

models—which parameterize the inverse equation 

using in situ observations—are the primary class 

of physics-based algorithms developed for inland 

water quality remote sensing retrievals 

(Matthews, 2011). This modelling technique is 

based on the reflectance approximation developed 

by Morel and Prieur (1977), who studied turbidity 

and chlorophyll in ocean waters (Batina and 

Krtalic, 2023).  This type of algorithms combines 

radiative transfer models with empirical 

relationships to estimate water quality parameters. 

These algorithms consider about the natural visual 

characteristics of water. and use physical models 

to simulate the light interaction with the water 

column. Semi-analytical algorithms recover the 

optical characteristics from measured remote 

sensing data and utilize empirical connections to 

relate them to the desired water quality parameter. 

The NASA MODIS algorithm for chlorophyll-a 

retrieval is an example of a semi-analytical 

algorithm. Wang et al. (2019) state that optically 

active parameters such chl-α, TSM, CDOM, and 

SDD are primarily retrieved using semi-analytical 

and analytical approaches. Dekker (1991) has also 

developed applications of semi-analytical models 

to looking through the same parameters across 

large spatiotemporal scales.  

 

Machine Learning Models 

New techniques for data analysis have been made 

available by improvements in processing capacity 

and data availability, enabling the estimation of 

water quality parameters at a range of 

spatiotemporal scales. Therefore, in the field of 

retrieving water quality, machine learning 

methods such as support vector machines, random 

forests, and neural networks are becoming more 

and more common (Chang et al., 2014; Lary et al., 

2016; Lin et al., 2018; Hafeez et al., 2019). 

Machine learning techniques can handle complex 

relationships and non-linearities in the data, 

offering potentially improved accuracy and 

robustness. These methods use large datasets of in 

situ measurements to train models to predict water 

quality parameters.   

In order to avoid overfitting, machine learning 

techniques require the availability of separate 

training and testing datasets with representative 

samples of the pertinent parameters. Most 

machine learning algorithms' scalability and 

power are dependent on the calibre and volume of 

training and testing data. With the correct inputs, 

these algorithms can provide generalizable 

models that capture complex, non-linear 

relationships between bio-geophysical variables 

and remotely measured reflectance. Xiang et al. 

(2021) discovered that machine learning yielded 

20% higher classification accuracy for trophic 

states than multivariate regression.
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Table 3: Details of the more often used aerial sensors for assessing water quality 

Types of Sensors Number of Bands Spectral Range (µm) Resolution (m) 

Multispectral MIVIS 102 VIS/NIR (28), MIR (64) TIR (10) VIS (0.43–0.83), NIR (1.15–1.55), MIR (2.0–2.5) TIR 

(8.2–12.7) 

3 to 8 depending 

on altitude 

MSS  0.42–14.00 25 

Hyperspectral AVIRIS 224 0.40–2.50 17 

HYDICE 210 0.40–2.50 0.8 to 4 

HyMap 128 0.40–2.50 3 to 10 

APEX Up to 300 VIS/NIR (114), SWIR 

(199) 

VIS/NIR (0.38–0.97), SWIR1 (0.97–2.50) 2 to 5 

CASI-1500 Up to 228 0.40–1.00 0.5 to 3 

EPS-H VIS/NIR (76), SWIR1 (32), SWIR2 

(32) 

TIR (12) VIS/NIR (0.43–1.05), SWIR1 (1.50–1.80), SWIR2 

(2.00–2.50), TIR (8–12.50) 

Dependent upon 

flight (min 1 m) 

DAIS 7915 VIS/NIR (32), SWIR1 (8), SWIR2 

(32), MIR (1), TIR (12) 

VIS/NIR (0.43–1.05), SWIR1 (1.50–1.80), SWIR2 (2.00–2.50), 

MIR (3.00–5.00), TIR (8.70–12.30) 

3 to 20 depending 

on altitude 

AISA Up to 288 0.43–0.90 1 

 

Table 4: Satellite sensors and water quality retrieval algorisms 

Satellite/remote sensing 

data 

Water quality parameters 

involved 

Algorithm used Sources 

MODIS/Aqua salinity, temperature, CDOM Polynomial regression  Wouthuyzen al., 2020 

MERIS Chlorophyll-a MLP Martinez et al., 2020 

GEE DO, temperature, salinity, Chl-a, 

and Ph 

Random Forest  Yniguez and Ottong, 

2020 

Landsat-8 Chl-a, TP, TN Artificial Neural Network, Random Forest and k-nearest neighbour Yniguez and Ottong, 

2020 

Sentinel-2  TP, TN, COD  Artificial Neural Network followed by Random Forest   Guo et al., 2021 

Sentinel-3/OLCI Chlorophyll-a Hierarchical Bayesian Spatio-temporal modelling  Myer et al., 2020 

MODIS/Aqua  Chlorophyll-a Linear Regression Abbas et al., 2019 

Landsat 8/OLI Chlorophyll-a Support Vector Machine Peterson et al., 2020 

SMOS Water temperature and salinity Random Forest Ruescas et al., 2018 

Sentinel-2A Chlorophyll-a, TSS Random Forest  Qasem et al., 2022 

Landsat-8, Sentinel-2 Dissolved Oxygen and turbidity Support Vector Machine regression, Multiple Linear Regression and 

Extreme Learning Machine 

Peterson et al., 2020  

Sentinel-2 Microphytobenthos Random Forest Martinez et al., 2020 
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Satellite/remote sensing 

data 

Water quality parameters 

involved 

Algorithm used Sources 

VIIRS Chlorophyll-a In comparison to in-situ data, RF has a greater accuracy on satellite 

observations  

Park et al., 2020 

GEE DO, temperature, salinity, Chl-a, 

and p 

RF bestowed significant accuracy Martinez et al., 2020  

SeaWiFS Chlorophyll-a Support Vector Machine  

Landsat-5-8  TSS, Chlorophyll-a, turbidity Artificial Neural Network Hafeez et al., 2020 

MODIS Chlorophyll-a Random Forest  Chen et al., 2019 

MODIS/Terra Turbidity, temperature Artificial Neural Network Chen et al., 2019 

SeaWiFS, MERIS,  Chlorophyll-a, temperature Extremely Randomized Tree overperform Random Forest Park et al., 2019 

Landsat 8/OLI Chlorophyll-a, TP Multiple Regression was reported significant  Lim and Choi, 2015 

Sentinel-3/OLCI CDOM, TSS Support Vector Machin and Random Forest Ruescas et al., 2018 

MODIS/Aqua Water temperature  Artificial Neural Network  Sunder and 

Ramakrishnan, 2017 

MODIS/Aqua Chlorophyll-a, Total Nitrogen, SDD Artificial Neural Network Chang et al., 2017 

MODIS Chlorophyll-a Support Vector Machin Wattelez et al., 2016 

GOCI TSS and CDOM Support Vector Machin  

MERIS, MODIS Chlorophyll-a SVM combine with Linear, polynomial, RBF, sigmoid regression analysis 

improves the precision of the algorithm  

Davila and Zaremba, 

2016 

VIIRS temperature, salinity, Chlorophyll-a Multiple Linear Regression Park et al., 2019 

Landsat-5/TM suspended solids Support Vector Machin Park et al., 2019 

MODIS TP Artificial Neural Network Chang et al., 2017 

MERIS Suspended solids, Chlorophyll-a Support Vector Machin  Tang et al., 2019 

SeaWiFS orthophosphate, silicate, salinity, 

temperature 

Multiple Linear Regression Green and Gould, 2008 

SeaWiFS CDOM, suspended solids, 

temperature, salinity 

Multiple Linear Regression Green and Gould, 2008 

MODIS Chl-a Convolutional Neural Network Yu B et al., 2020 

Landsat-8, GEE, Sentinel-

2 

Water turbidity, TSS, Total 

phosphorus 

Support Vector Machin Govedari and Yakovlev, 

2019 
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CONCLUSION  

Increasing stresses on aquatic ecosystems all over 

the world have generated the need for cost 

effective and quick water monitoring techniques. 

Hence, with space science has advanced and 

computer applications have become more widely 

used, remote sensing-based water quality 

monitoring have been practiced across the world, 

and has proven to give better results in both 

temporal and spatial scale. This review 

summarizes the space-born and airborne data 

sources, retrieval algorithms and water quality 

parameters. Furthermore, the review showed that 

a variety of multispectral and hyperspectral data, 

are frequently utilized in water quality evaluation 

and offer adaptable and effective solutions that 

address the need for water quality analysis using 

higher resolution sensors. 
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