Exploring Paka Geothermal Reservoir through 3D Visualisation and Gravity Data Inversion Modelling in Northern Kenya Rift
Abstract
The Paka geothermal field, located in the Northern Kenya Rift segment, is influenced by tectonic extension and magmatic activity that drives crustal uplift and hydrothermal circulation. While most previous gravity studies in this region targeted depths beyond 6 km, shallow intrusive structures crucial for geothermal resources remain poorly resolved. This study applied regional Bouguer anomaly mapping and 3D gravity inversion to characterise density variations, intrusive heat sources, and favourable structural settings for resource development. Gravity data were processed with a Bouguer density of 2.0417 g/cm3, anomaly separation through upward continuation, and 3D VOXI inversion in Geosoft Oasis. Results reveal a broad negative Bouguer anomaly (–126 to –103 mGal) about 20 km wide, with superimposed narrower anomalies (~5 km wide) in the northern caldera. These align with NW–SE, NE–SW, and N–S fault trends, consistent with regional tectonic structures. Near-surface pyroclastic sediments (0–250 m, 2.1–2.3 g/cm3) overlie a denser caprock (250–700 m, 2.25–2.45 g/cm3) interpreted as hydrothermally altered tuffs. At ~2.5 km depth, low-density zones (1.75–1.8 g/cm3) suggest water reservoirs or altered tuffs. A high-density mafic intrusion, likely of trachytic to basaltic magma origin, was identified between 2.0 and 3.1 km depth (volume ~475 ±10 % km3; 2.50–2.90 g/cm3), serving as the primary heat source. The associated reservoir beneath the summit lies at ~2.2 km depth with an estimated volume of 120 ±10 % km3. Structural continuity links Paka to Silale and Korosi volcanoes along the rift axis. The findings of this study highlight the summit region as the most promising drilling target for sustainable geothermal development.
Downloads
References
Abdelrady, M., Moneim, M. A., Alarifi, S. S., Abdelrady, A., Othman, A., Mohammed, M. A., & Mohamed, A. (2023). Geophysical investigations for the identification of subsurface features influencing mineralization zones. Journal of King Saud University - Science, 35(7), 102809. https://doi.org/10.1016/j.jksus.2023.102809
Achieng, J., Mutua, J., Mibei, G., Olaka, L., & Waswa, A. K. (2017). Mapping of hydrothermal minerals related to geothermal activities using remote sensing and GIS: A case study of Paka volcano in Kenyan Rift Valley. International Journal of Geosciences, 08(05), 711- 725. https://doi.org/10.4236/ijg.2017.85039
Al-Badani, M. A., & Al-Wathaf, Y. M. (2018). Using the aeromagnetic data for mapping the basement depth and contact locations, at southern part of Tihamah region, western Yemen. Egyptian Journal of Petroleum, 27(4), 485- 495.https://doi.org/10.1016/j.ejpe.2017.07.015
Awaleh, M. B., & Nishijima, J. (2024). Delineation of geological structures of Arta geothermal prospect in Djibouti based on the gravity data analysis and interpretation. Geothermics, 117, 102894. https://doi.org/10.1016/j.geothermics.2023.102894
Biggs, J., Anthony, E., & Ebinger, C. (2009). Multiple inflation and deflation events at Kenyan volcanoes, East African rift. Geology, 37(11), 979- 982.https://doi.org/10.1130/g30133a.1
Biggs, J., Robertson, E., & Mace, M. (2013). ISMER-Active magmatic processes in the East African rift: A satellite radar perspective. Springer Briefs in Earth System Sciences, 81-91. https://doi.org/10.1007/978-3-642-32521-2_9
Boling, R. A., Tanesib, J. L., Sutaji, H. I., Lapono, L. A., & Lewerissa, R. (2024). Re-evaluation of a geothermal system model based on high-resolution gravity field inversion: A case study of the Maritaing geothermal field, Alor Regency, East Nusa Tenggara province, Indonesia. Kuwait Journal of Science, 51(2), 100187.https://doi.org/10.1016/j.kjs.2024.100187
Dunkley, P. N., Smith, M., Allen, D. J., & Darling, W. G. (1993). The geothermal activity and geology of the northern sector of the Kenya Rift Valley (SC/93/001). Nottingham, UK, British Geological Survey, 202pp. https://nora.nerc.ac.uk/id/eprint/507920
Ebinger, C. (2005). Continental break-up: The East African perspective. Astronomy and Geophysics, 46(2), 2.16- 2.21. https://doi.org/10.1111/j.1468-4004.2005.46216.x
Emishaw, L., Mickus, K., & Abdelsalem, M. (2022). Spectral analysis of gravity data using spectral analysis with Piecewise regression (SAPR): Application to the Lake Turkana rift, northern Kenya and Southern Ethiopia. Pure and Applied Geophysics, 180(1), 187-204.https://doi.org/10.1007/s00024-022-03210-w
Fedi, M., Cella, F., D’Antonio, M., Florio, G., Paoletti, V., & Morra, V. (2018). Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26346-z
Feng, X., Ma, J., Guo, R., Zhang, J., & Yang, L. (2024). 3D gravity and magnetic inversion reveal geothermal structure dominated by radioactive heat production of granites in the Weihe basin. Tectonophysics, 874, 230237. https://doi.org/10.1016/j.tecto.2024.230237
Ghanbarian, B., Liang, F., & Liu, H. (2023). Physics of fluid flow and transport in unconventional reservoir rocks. John Wiley & Sons.
Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G. R., Kellogg, J., Kucks, R., Li, X., Mainville, A., Morin, R., Pilkington, M., Plouff, D., Ravat, D., Roman, D., Urrutia-Fucugauchi, J., … Winester, D. (2005). New standards for reducing gravity data: The North American gravity database. Geophysics, 70(4), J25-J32. https://doi.org/10.1190/1.1988183
Hinze, W. J., Frese, R. R., & Saad, A. H. (2013). Gravity and magnetic exploration: Principles, practices, and applications. Cambridge University Press.
Iliffe, J. (2000). Datums and map projections for remote sensing, GIS, and surveying. CRC Press.
Jacobsen, B. H. (1987). A case for upward continuation as a standard separation filter for potential‐field maps. GEOPHYSICS, 52(8), 1138-1148. https://doi.org/10.1190/1.1442378
Kanda, I., Fujimitsu, Y., & Nishijima, J. (2019). Geological structures controlling the placement and geometry of heat sources within the Menengai geothermal field, Kenya as evidenced by a gravity study. Geothermics, 79, 67- 81.https://doi.org/10.1016/j.geothermics.2018.12.012
Kearey, P., Brooks, M., & Hill, I. (2013). An introduction to geophysical exploration. John Wiley & Sons.
Kebede, H., Alemu, A., & Fisseha, S. (2020). Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-shala basin, central main Ethiopian rift. Heliyon, 6(1), e03292. https://doi.org/10.1016/j.heliyon.2020.e03292
Keller, G. R., Aftab Khan, M., Morganc, P., Wendlandt, R. F., Scott Baldridge, W., Olsen, K. H., Prodehl, C., & Braile, L. (1991). A comparative study of the Rio Grande and Kenya rifts. Tectonophysics, 197(2-4), 355-371. https://doi.org/10.1016/0040-1951(91)90050-3
Korir, H. K., Githiri, J. G., & K'orowe, M. O. (2016). Establishment of absolute gravity stations referenced to international gravity station network of 1971 datum in County levels in Kenya. IOSR Journal of Applied Geology and Geophysics, 04(05), 64-71.https://doi.org/10.9790/0990-0405016471
Latypov, R., Chistyakova, S. Y., Namur, O., & Barnes, S. (2020). Dynamics of evolving magma chambers: Textural and chemical evolution of cumulates at the arrival of new liquidus phases. Earth-Science Reviews, 210, 103388.https://doi.org/10.1016/j.earscirev.2020.103388
Lemgruber-Traby, A., Bossennec, C., Béthune, G., Souque, C., Divies, R., Van der Vaart, J., Bär, K., & Sass, I. (2023). Basin-scale 3D modelling of the northern upper Rhine graben: Insights into basement fault-related geothermal flow pathways. Geoenergy, 1(1), 22-25. https://doi.org/10.1144/geoenergy2023-002
Lichoro, C. M., Árnason, K., & Cumming, W. (2017). Resistivity imaging of geothermal resources in northern Kenya rift by joint 1D inversion of MT and TEM data. Geothermics, 68, 20- 32. https://doi.org/10.1016/j.geothermics.2017.02.006
Lichoro, C. M., Árnason, K., & Cumming, W. (2019). Joint interpretation of gravity and resistivity data from the northern Kenya volcanic rift zone: Structural and geothermal significance. Geothermics, 77, 139-150.https://doi.org/10.1016/j.geothermics.2018.09.006
Luiso, P., Paoletti, V., Nappi, R., La Manna, M., Cella, F., Gaudiosi, G., Fedi, M., & Iorio, M. (2018). A multidisciplinary approach to characterize the geometry of active faults: The example of Mt. Massico, southern Italy. Geophysical Journal International, 213(3), 1673-1681. https://doi.org/10.1093/gji/ggy080
Maithya, J., Fujimitsu, Y., & Nishijima, J. (2020). Analysis of gravity data to delineate structural features controlling the Eburru geothermal system in Kenya. Geothermics, 85, 101795-101798. https://doi.org/10.1016/j.geothermics.2019.101795
Maling, D. (2013). Coordinate systems and map projections. Elsevier.
Mariita, N. O., & Keller, G. R. (2007). An integrated geophysical study of the northern Kenya Rift. Journal of African Earth Sciences, 48(2- 3), 80- 94.https://doi.org/10.1016/j.jafrearsci.2006.05.008
Martinez, C., Li, Y., Krahenbuhl, R., & Braga, M. A. (2013). 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilátero Ferrífero, Brazil. GEOPHYSICS, 78(1), B1-B11. https://doi.org/10.1190/geo2012-0106.1
Mechie, J., Keller, G., Prodehl, C., Gaciri, S., Braile, L., Mooney, W., Gajewski, D., & Sandmeier, K. (1994). Crustal structure beneath the Kenya rift from axial profile data. Tectonophysics, 236(1-4), 179-200. https://doi.org/10.1016/0040-1951(94)90176-7
Mibei, G., Bali, E., Geirsson, H., Guðfinnsson, G. H., Harðarson, B. S., & Franzson, H. (2021a). Partial melt generation and evolution of magma reservoir conditions at the Paka volcanic complex in Kenya: Constraints from geochemistry, petrology and geophysics. Lithos, 400-401, 106385. https://doi.org/10.1016/j.lithos.2021.106385
Mibei, G., Harðarson, B. S., Franzson, H., Bali, E., Geirsson, H., & Guðfinnsson, G. H. (2021b). Eruptive history and volcano-tectonic evolution of Paka volcanic complex in the northern Kenya rift: Insights into the geothermal heat source. Journal of African Earth Sciences, 173, 103951. https://doi.org/10.1016/j.jafrearsci.2020.103951
Mohamed, A., Al Deep, M., Abdelrahman, K., & Abdelrady, A. (2022). Geometry of the magma chamber and Curie point depth beneath Hawaii island: Inferences from magnetic and gravity data. Frontiers in Earth Science, 10.https://doi.org/10.3389/feart.2022.847984
Morley, C. K. (2002). Evolution of large normal faults: Evidence from seismic reflection data. AAPG Bulletin, 86. https://doi.org/10.1306/61eedbfc-173e-11d7-8645000102c1865d
Nyaberi, D. M. (2023). Implications on gravity anomaly measurements associated with different Lithologies in Turkana South Subcounty. Journal of Geoscience and Environment Protection, 11(01), 79-118. https://doi.org/10.4236/gep.2023.111006
Nyakundi, E. R. (2022). Geothermal heat sources characterization and mapping using heat flow, gravity, and magnetics in Eburru, Kenya (Doctoral dissertation, JKUAT-COPAS).
Nyakundi, E. R., Gitonga, G. J., & K’Orowe, M. O. (2021). Simultaneous modelling of gravity and magnetic data in a measured heat flux area to characterize geothermal heat sources: A case for Eburru geothermal complex, Kenya. Journal of Geoscience and Environment Protection, 09(05), 40-54. https://doi.org/10.4236/gep.2021.95005
Omollo, P., & Nishijima, J. (2023). Analysis and interpretation of the gravity data to delineate subsurface structural geometry of the Olkaria geothermal reservoir, Kenya. Geothermics, 110, 102663. https://doi.org/10.1016/j.geothermics.2023.102663
Paoletti, V., Fedi, M., Italiano, F., Florio, G., & Ialongo, S. (2016). Inversion of gravity gradient tensor data: Does it provide better resolution? Geophysical Journal International, 205(1), 192-202. https://doi.org/10.1093/gji/ggw003
Parasnis, D. S. (2012). Principles of applied geophysics. Springer Science & Business Media.
Pasqua, C., Chiozzi, P., & Verdoya, M. (2023). Geothermal play types along the East Africa rift system: Examples from Ethiopia, Kenya and Tanzania. Energies, 16(4), 1656.https://doi.org/10.3390/en16041656
Permana, N. R., & Gunawan, B. (2023). 3D visualization of geothermal system structure based on inversion model of gravity data. Case study: Mt. Salak region, West Java. Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, 6(I), 40- 49. https://doi.org/10.15408/fiziya.v6ii.33439
Petroškevičius, P., Birvydienė, R., Obuchovski, R., & Paršeliūnas, E. (2012). Investigation into measurements using gravimeters SCINTREX cg-5. Geodesy and Cartography, 37(4), 154-158. https://doi.org/10.3846/13921541.2011.645338
Pointing, A., & Maguire, P. (1990). A seismic velocity model for the upper mantle in northern Kenya derived from teleseismic earthquake data. Journal of African Earth Sciences (and the Middle East), 11(3-4), 391-399. https://doi.org/10.1016/0899-5362(90)90018-a
Primastika, A. A., Fadrian, D. F., Zani, F. R., & Permana, N. R. (2023). Identification of Mount Sirung geothermal potential based on land surface temperature and 3D gravity model. Journal Geocelebes, 7(2), 117-129.https://doi.org/10.20956/geocelebes.v7i2.23759
Prodehl, C., Jacob, A., Thybo, H., Dindi, E., & Stangl, R. (1994). Crustal structure on the northeastern flank of the Kenya rift. Tectonophysics, 236(1-4), 271-290.https://doi.org/10.1016/0040-1951(94)90180-5
Prodehl, C., Ritter, J., Mechie, J., Keller, G., Khan, M., Jacob, B., Fuchs, K., Nyambok, I., Obel, J., & Riaroh, D. (1997). The KRISP 94 lithospheric investigation of southern Kenya — the experiments and their main results. Tectonophysics, 278(1-4), 121-147.https://doi.org/10.1016/s0040-1951(97)00098-x
Seequent. (2023). Oasis user’s manual guide. The Bentley Subsurface Company. Christchurch, New Zealand.
Simiyu, S. M., & Keller, G. (2000). Seismic monitoring of the Olkaria geothermal area, Kenya Rift Valley. Journal of Volcanology and Geothermal Research, 95(1-4), 197-208.https://doi.org/10.1016/s0377-0273(99)00124-9
Simiyu, S. M., & Keller, G. R. (1997). An integrated analysis of lithospheric structure across the East African plateau based on gravity anomalies and recent seismic studies. Tectonophysics, 278(1-4), 291-313. https://doi.org/10.1016/s0040-1951(97)00109-1
Simiyu, S. M., & Keller, G. R. (2001). An integrated geophysical analysis of the upper crust of the southern Kenya rift. Geophysical Journal International, 147(3), 543-561.https://doi.org/10.1046/j.0956-540x.2001.01542.x
Sippel, J., Meeßen, C., Cacace, M., Mechie, J., Fishwick, S., Heine, C., Scheck-Wenderoth, M., & Strecker, M. R. (2017). The Kenya rift revisited: Insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth, 8(1), 45-81. https://doi.org/10.5194/se-8-45-2017
Smith, M. (1994). Stratigraphic and structural constraints on mechanisms of active rifting in the Gregory rift, Kenya. Tectonophysics, 236(1-4), 3-22. https://doi.org/10.1016/0040-1951(94)90166-x
Smith, M., & Mosley, P. (1993). Crustal heterogeneity and basement influence on the development of the Kenya rift, East Africa. Tectonics, 12(2), 591-606. https://doi.org/10.1029/92tc01710
Stockinger, G. M. (2022). Fracturing in deep boreholes: Stress, structural and lithology-controlled fracture initiation and propagation in deep geothermal boreholes in the upper Jurassic carbonate rocks of the north Alpine foreland basin. Springer Nature.
Swain, C., Maguire, P., & Khan, M. (1994). Geophysical experiments and models of the Kenya rift before 1989. Tectonophysics, 236(1-4), 23-32. https://doi.org/10.1016/0040-1951(94)90167-8
Uwiduhaye, J. D., Mizunaga, H., & Saibi, H. (2018). Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda. Journal of African Earth Sciences, 139, 184- 192. https://doi.org/10.1016/j.jafrearsci.2017.12.016
Wafula, P. C., Amollo, T. A., Mariita, N. O., & Kanda, I. K. (2025). Characterization of 3D fault structures in the Paka geothermal field using TDR and HGM filters on Bouguer gravity data: Implications for geothermal fluid flow dynamics in the northern Kenya rift. Journal of African Earth Sciences, 230, 105748. https://doi.org/10.1016/j.jafrearsci.2025.105748
Wamalwa, A. M., Mickus, K. L., & Serpa, L. F. (2013). Geophysical characterization of the Menengai volcano, central Kenya rift from the analysis of magnetotelluric and gravity data. Geophysics, 78(4), B187-B199. https://doi.org/10.1190/geo2011-0419.1
Zhao, J., Zeng, Z., Zhou, S., Yan, J., & An, B. (2023). 3-D inversion of gravity data of the central and eastern Gonghe basin for geothermal exploration. Energies, 16(5), 2277. https://doi.org/10.3390/en16052277
Copyright (c) 2026 Peter Chembeni Wafula, Tabitha Awuor Amollo, Nicholas Obuya Mariita, Isaac K. Kanda

This work is licensed under a Creative Commons Attribution 4.0 International License.