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ABSTRACT 

Due to the emergence of many applications in areas of open-channel fluid 

flow, interest in this branch of fluid mechanics has increased considerably. 

These areas are wide-ranging, including electricity generation using tidal 

waves, control of floods and improvement of irrigation systems. Finance, 

thermal imaging, harnessing of melting of glaciers, flow of fluids over ramps 

and sluice gates, and quite notably, petroleum exploration are other areas 

where open channel flow mathematics find great relevance. Whether the free 

surface of the open channel is being predicted using known bottom 

characteristics (which is called the ‘direct approach’), or the bottom is being 

inferred from an observable surface (referred to as the ‘inverse approach’), 

researchers often find the need to make computations easier by transforming 

complex topologies into simpler, more relatable physical equivalents. In this 

paper, the channel flow of a gravity-influenced Newtonian fluid is treated as 

the physical 𝑤 −plane. The fluid is flowing in the positive 𝑋 direction. The 

upper half-plane is conformally equivalent to the interior domain determined 

by any polygon, and the interior points of the physical plane are transformed 

to the corresponding points above the real axis of the upper half-plane which 

is then mapped onto the auxiliary half-plane, (the ℘ − plane) by being treated 

as an infinite strip by use of the Schwarz-Christoffel theorem. Assumptions 

are made that the fluid has dimensional quantities such as uniform spee𝑑 𝑈∞ 

far upstream, and velocity potential Φ. Far upstream before the arbitrary 

obstacle is encountered, the fluid has a uniform height, ℎ. Then 𝑈∞ and ℎ  are 

used to nondimensionalize the variables to enable computation in a 

completely non-dimensional environment.  With the fluid assumed as steady, 

inviscid, irrotational and incompressible, w representing the physical w-

plane, 𝜉𝑖 (and t) being points on the auxiliary the ℘- plane, θ the angle made 

by a tangent to this plane at designated points, the required mapping is found 

to be  
 𝑑𝑤

𝑑℘
=

𝑘

℘
exp [−

1

π
∫

θ(𝑡)

ξ−𝑡

∞

−∞
 𝑑𝑡 + θ(ξ)]. 
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INTRODUCTION 

The complex number ℘ = ξ(𝑥, 𝑦) + iη(x, y) can 

be represented easily using an Argand diagram by 

plotting ξ, η and ℘ in the same complex space. 

Any function f(℘) = w = x + iy will generally 

be complex, and like ℘, a function of x and y. If a 

point P on the ℘-plane is transformed to a 

corresponding point 𝑃′ in the w-plane, this 

process is called the mapping of P onto P′ under 

the transformation w = f(℘),  while P′ is called 

the image of P.  

Conform and Isogonal Transformations 

If the transformations 𝐹(𝑥, 𝑦) and Ω(𝑥, 𝑦) map 

two curves 𝐶1 and 𝐶2of the ℘-plane onto two 

curves 𝐶1
′ and 𝐶2

′  of the 𝑤 plane respectively and 

the angle between 𝐶1 and 𝐶2 at the point ℘ = ℘0 

is equal to the angle between 𝐶1
′ and 𝐶2

′  at ℘ =

℘0, this transformation is called an isogonal 

transformation. If both the direction of rotation 

and magnitude of the angle are preserved, the 

transformation is said to be conformal. Therefore, 

the conditions that a transformation 𝑤 = 𝑓(℘) be 

conformal are:  

1. 𝑤 = 𝑓(℘) Should be a regular function of 

℘ with no singularities, single-valued, have a 

continuous derivative at every point in the region, 

and satisfy the Cauchy-Riemann equations.  

2. The derivative 
𝑑𝑤

𝑑℘
 Must not vanish, i.e., the 

transformation must not fail at a critical point.  

Common transformations include translation 𝑤 =

 ℘ + 𝑐, 𝑚agnification and rotation,  𝑤 = 𝑐 ℘,  

and inversion( 𝑤 =
1

℘
 and ℘ =

1

𝑤
), 𝑐 being a real 

or complex constant. 

 

Illustrative Examples of Conformal Mapping  

In the following adaptations from Ablowitz, & 

Fokas (2021), John, & Russell (2012), Banjai 

(2000), and Dennis (2022), conformal mapping is 

illustrated further by discussing a couple of 

transformations. The function 𝑤(𝑧) = 𝑧 +
4

𝑧
 is 

considered, with 𝑓(℘) such that |℘|  =  1, (a unit 

circle).  

For (𝑧) = 𝑧 +
4

𝑧
 , a singularity is noted at 𝑧 =  0, 

and, since 𝑓′(𝑧) = 1 −
4

𝑧2 ,  critical points at 𝑧 =

 ±2 as well. The transformation is therefore not 

conformal at the points (0,+2,−2). For the unit 

circle |℘|  =  1 , setting ℘ =  𝜉 + 𝑖𝜂, it follows 

that |℘| = η2 + ξ2 =  1. Additionally, 𝑤 =  𝑥 +

𝑖𝑦 = 𝑧 +
4

𝑧
   ⇒ 𝑥 + 𝑖𝑦 = 𝜉 + 𝑖𝜂 +

4

𝜉+𝑖𝜂
= 𝜉 +

𝑖𝜂 +
4(𝜉−𝑖𝜂)

𝜉2+𝜂2  . Equating the real and the complex 

parts, 𝑥 = 𝜉 +
4𝜉

𝜉2+𝜂2 and 𝑦 = 𝜂 −
4𝜂

𝜉2+𝜂2 . 

Therefore, 𝑥 =  5𝜉 and 𝑦 =  −3𝜂. (This is 

because |℘|  =  𝜂2 + 𝜉2 = 1 for the unit circle 

above). Thus 𝜉 =
𝑥

5
 and 𝜂 = −

𝑦

3
 .  

The circle 𝜉2 + 𝜂2 = 1 in the ℘-plane is mapped 

to the image 
𝑥2

52 +
𝑦2

32 = 1 in the physical w-plane, 

which is, in fact, an ellipse with a centre at the 

origin, major diagonal size 5, and minor diagonal 

size 3.  

In a similar way, the non-linear function 𝑓(℘) =

℘2 which has no singularities and only has a 

critical point at the origin ℘ = 0 (because 𝑓′(℘) =

2℘ = 0, at ℘ = 0) may be rendered in exponential 

form to have 𝑓′(℘) = (𝑟𝑒𝑖θ)
2

= 𝑟2𝑒𝑖 2θ. This 

clearly shows that the function 𝑓 doubles the 

argument and squares the modulus, 𝑟. As a result, 

under 𝑓(℘) = ℘2,  the line (complex number) 

http://creativecommons.org/licenses/by/4.0/
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𝑂𝐵 in Figure 1 and the annulus 𝑊𝑋𝑌𝑍 in Figure 

2 are transformed as illustrated.  

Figure 1: The Conformal Mapping of a Simple Complex Number under 𝒇(℘) = ℘𝟐 

 

Figure 2: The Conformal Mapping of an Annulus Under 𝒇(℘) = ℘𝟐 

 

Notably, the angles at the corners 𝑊,𝑋, 𝑌 and 𝑍, 

which are in fact right angles, are retained under 

the transformation, satisfying a key criterion for a 

conformal mapping.  

THE SCHWARZ-CHRISTOFFEL 

TRANSFORMATION 

The Schwarz-Christoffel transformation is a 

common conformal transformation for mapping 

the interior of a complicated n-sided physical 

plane into the upper half of an auxiliary plane that 

is easier to deal with. Discovered independently in 

the 1860s by German mathematicians, Elwin 

Bruno Christoffel and Herman Amandus 

Schwarz, its accuracy is guaranteed by the 

Riemann Mapping Theorem that states that any 

two simply-connected domains with more than 

one boundary point can be mapped conformally 

upon one another. This means that the upper half-

plane is conformally equivalent to the interior 

domain determined by any polygon. It is 

adaptable to solving two-dimensional potential 

fluid flow problems whereby interior points of the 

physical plane are transformed to the 

corresponding points above the real axis of the 

upper half-plane. More discussion of the 

foundations of this theorem and its applications 

are found in Driscoll, & Trefethen (2002), 

Gonzalo et al. (2008) and Bergonio (2008). 

http://creativecommons.org/licenses/by/4.0/
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Thus, under the Schwarz-Christoffel mapping, 

any polygon in the physical 𝑤-the plane may be 

made to map onto the entire half of the auxiliary 

℘ plane, while the boundary of the polygon maps 

onto the real axis of the ℘-plane.  

Statement and Proof of the Schwarz-

Christoffel Theorem  

Theorem 1 [Schwarz-Christoffel]. Let 𝑃 be a 

simple, closed polygon with n vertices. Let 

𝑤1, 𝑤2 … ,𝑤𝑛 be points coinciding with the 

apexes of a polygon in the w-plane (physical 

plane) and which are mapped onto the points  

𝜉1 < 𝜉2 < ⋯ < 𝜉𝑛  

In the real axis of the ℘ (auxiliary) plane. Let 

the polygon have interior angles 𝛼𝑘, where 

𝛼1 + 𝛼2 + ⋯+ 𝛼 𝑛 = (𝑛 − 2)𝜋 which are 

positioned at the corners of the polygon 

designated by the points 𝑤1, 𝑤2 … ,𝑤𝑛 above. 

The transformation from the ℘-plane to the 

𝑤-plane is defined in terms of the derivative 

𝑓′(℘) as 

𝑤 = 𝐾0 ∫ {[(℘ − ξ1)
α1
π

−1(℘ − ξ2)
α2
π

−1 …(℘ −

ξ𝑛)
α𝑛
π

−1
}]𝑑 ℘ + 𝐾1 (1) 

𝑤𝑖𝑡ℎ 𝐾0and 𝐾1 being suitably chosen constants. 

In differential form, equation (1) is, 

𝑑𝑤

𝑑℘
= 𝐾0(℘ − 𝜉1)

𝛼1
𝜋

−1(℘ − 𝜉2)
𝛼2
𝜋

−1(℘ −

𝜉3)
𝛼3
𝜋

−1 …  (2) 

Here, 𝐾0 is a constant which may be complex. 

Thus, the Schwarz-Christoffel theorem 

transforms the real axis of the ℘-plane into the 

boundary of the polygon 𝑃 in the w-plane such 

that the vertices of the polygon at which the 

interior angles are the α1, α2 …α𝑛 corresponds to 

the points 𝑤1 < 𝑤2 < ⋯ < 𝑤𝑛. When the 

polygon is simple, the interior is mapped by the 

transformation onto the upper plane of the ℘-

plane. This setting, elaborated well in Floryan et 

al. (1987) is illustrated below in Figure 3.  

Figure 3: Illustrative Diagram for Schwarz-Christoffel Transformation with n = 5 

 

Proof of the Schwarz-Christoffel Theorem 

A detailed derivation of the Schwarz-Christoffel 

transformation and a wide account of its varied 

application is provided in the classic book by 

Milne-Thompson (1957). Comprehensive proofs 

are available in Driscoll, & Trefethen (2002) 

Brown, & Churchill (2009), among other sources.  

An informal justification for the transformation, 

however, is provided as follows. Given equation 

(2), consider a family of infinitesimal increments 

d℘ along the real axis in the ℘ plane, and their 

images 𝑑𝑤 in the 𝑤 plane. This is done by 

exploring the arguments arg(d℘), of the 

increments d℘. Equation (2) is equivalent to  

http://creativecommons.org/licenses/by/4.0/
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arg(𝑑𝑤) = arg(𝑑℘) + arg(𝐾0) + (
α1

π
−

1) arg(℘ − ξ1) + (
α2

π
− 1) arg(℘ − ξ2) + (

α3

π
−

1) arg(℘ − ξ3)…+ (
α𝑛

π
− 1) arg(℘ − ξ𝑛)

 (3) 

Along the real axis in the positive direction, a time 

comes when ℘ is between consecutive 𝜉𝑖. At that 

instance, every term of the equation (3) is 

constant. The implication is that 𝑤 moves in a 

straight line. This explains why the image of 𝑤-

plane is polygonal. To investigate the behaviour at 

the singular points (corners), it is noted that when 

℘ = 𝜉𝑖 not only do all the terms in the equation 

(3) other than the ones containing the 𝜉𝑖 have a 

constant value as mentioned already, but 

𝑎𝑟𝑔(℘ − 𝜉𝑖) jumps from the value 𝜋 when ℘ <

𝜉𝑖 to a value 0 for values greater than 𝜉𝑖. This also 

implies that the value of (
𝛼𝑖

𝜋
− 1) arg(℘ − 𝜉𝑖) 

jumps from 𝛼𝑖 − 𝜋 to the value 0. The direction of 

traversal of w has an anti-clockwise rotation 

(positive) by a magnitude of (𝜋 − 𝛼𝑖), 

necessitating the introduction of an angle 𝛼𝑖 

newly in the polygon. The mapping is one-to-one 

and maps the upper half plane to the interior of a 

polygon. Driscoll, & Trefethen (2002) and 

Wolfram (1999) give more details. Moreover, the 

real axis maps to the boundary of a polygonal 

region.  

Generalized Schwarz-Christoffel Theorem in 

Exponential Form  

The equation (2) may be written as the product, 

𝑑𝑤

𝑑℘
= 𝐾0 ∏ (℘ − 𝜉𝑖)

𝛼𝑖
𝜋

−1𝑛
𝑖=1  (4) 

Taking the logarithm, and bearing in mind that 

log℘ = log |℘| + 𝑖 arg(℘) (5) 

then, 

log
𝑑𝑤

𝑑℘
= log𝐾0 + ∑ (

α𝑖

π
− 1) log(℘ − ξ𝑖)

𝑛
𝑖=1

 (6) 

and 

log (
𝑑𝑤

𝑑℘
) + 𝑖 arg (

𝑑𝑤

𝑑℘
) = log|𝐾0| + 𝑖 arg𝐾0 +

∑ (
α𝑖

π
− 1) [log|℘ − ξ𝑖| + 𝑖 arg(℘ − ξ𝑖)]

𝑛
𝑖=1  

      

     (7) 

Equating the real and imaginary parts of the 

equation (7) it is noted that 

arg (
𝑑𝑤

𝑑℘
) = arg𝐾0 + ∑ (

α𝑖

π
− 1) arg(℘ − ξ𝑖)

𝑛
𝑖=1

 (8) 

and 

arg(𝑑𝑤) = arg(𝑑℘) + arg𝐾0 + ∑ (
α𝑖

π
−𝑛

𝑖=1

1) arg(℘ − ξ𝑖) (9) 

which is the unexpanded form of equation (3). 

Figure 4 below, represents the 𝑖𝑡ℎ segment in the 

physical 𝑤 −plane, with θ𝑖 being the angle made 

by the tangent to a smooth curve in this plane at 

the point which corresponds to the real axis in the 

℘ − plane. 

Figure 4: The ith Angles of the Physical w-plane 
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Clearly, 

β𝑖 + (
π

2
− θ𝑖) +

π

2
= 2                            (10) 

β𝑖 = π + θ𝑖   𝑎𝑛𝑑  β𝑖+1 = π + θ𝑖+1

 (11) 

For some ϵ < ξ𝑖 , that is ϵ − ξ𝑖 < 0, there exists a 

term arg(ϵ − ξ𝑖) = π emanating from equation 

(8). For the (𝑖 + 1)𝑡ℎsegment, it follows that, ϵ −

ξ𝑖 > 0, which means that, ℘ is now on the positive 

real axis and arg(ϵ − ξ𝑖) = 0. Therefore, the 

angle subtended by the 𝑖𝑡ℎ segment is 

β(𝑖+1) = β𝑖 − (
α𝑖

π
− 1) (12) 

Invoking the equations (9) and (11) the result is, 

π + θ(𝑖+1) = π + θ𝑖 − (
α𝑖

π
− 1)π , θ𝑖+1 − θ𝑖 =

π(
α𝑖

π
− 1)  (13) 

Applying the Mean Value Theorem (MVT), 

whose general form is 

f(xi+1) − f(xi) = f ′(x̃)(xi+1 − xi) (14) 

where 𝑥̃ lies between 𝑥𝑖+1 and 𝑥𝑖. 

In terms of  θ, the MVT is equivalent to 

θ(𝑖+1) − θ𝑖 = (ξ𝑖+1 − ξ𝑖) θ  (ξ𝑖̃)
′

 (15) 

Where θ𝑖 = θ(ξ𝑖). Applying the equation (15) in 

(8) and additionally letting 𝑛 → ∞ and ξ(𝑖+1) −

ξ𝑖 → 0, it is noted that 

log (
𝑑𝑤

𝑑℘
) = lo g𝐾0 + ∑ (

−1

π
) (ξ𝑖+1 −𝑛

𝑖=1

ξ𝑖)θ
′(ξ𝑖) log(℘ − ξ𝑖) (16) 

Replacing the finite term with an integral, 

log (
𝑑𝑤

𝑑℘
) = log𝐾0 −

1

π
∫ θ′(ξ) log(℘ − ξ) 𝑑ξ

𝑏

𝑎

 (17) 

The generalized Schwarz-Christoffel form in 

exponential form has been obtained, which is 

𝑑𝑤

𝑑℘
= 𝐾0 exp [

−1

π
∫ θ′(ξ) log(℘ − ξ)

𝑏

𝑎
 𝑑ξ] 

 (18) 

θ in the above discussion represents the angle 

made by the tangent to a smooth curve in the 

𝑤 −plane to the point corresponding to the real 

axis in the ℘-plane. 

APPLICATION OF THE SCHWARZ-

CHRISTOFFEL THEOREM TO MAP AN 

INFINITE STRIP 

Considering an infinite strip 𝑄∞, 𝑅∞, 𝑅∞
′ , 𝑄∞

′   

which has a height ℎ in the physical,w−plane. Let 

the physical setting be as in the Figure (5). Letting 

it open out, and the points 𝑅∞
′ , 𝑎𝑛𝑑 𝑄∞

′   to 

coincide, all the points in the w−plane boundaries 

are therefore mapped onto the real axis of the ℘-

plane. The points 𝑅∞
′ , 𝑎𝑛𝑑 𝑄∞

′   are placed at ℘ =

0 that is, at the origin of the ℘-plane. Let the 

points 𝐻(0, ℎ) and 𝑂(0,0) in the physical 

w−plane map to the points ξ = +1 and ξ = −1, in 

the ℘-plane. 

Figure 5 shows that 𝑄∞  and 𝑄∞
′ on the physical 

plane are mapped respectively onto ξ = −∞ and 

ξ = ∞ in the ℘ −plane. Since the points 𝑅∞ and 

𝑅∞
′ in the physical plane are infinitely far from the 

origin and the argument of 𝑅∞
′  is tending to zero, 

the conclusion is that these two points are 

coincident and make an angle of zero between 

them. 
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Figure 5: The Physical Plane (w-plane) 

 

Figure 6: The Upper Half-plane(℘-plane) 

 

The Schwarz-Christoffel theorem is used to 

transform this infinite strip in the physical plane 

into the upper half-plane. Given equation (2) and 

the information just above, that is, the angle 

between 𝑅∞ and 𝑅∞
′  is vanishing, and the 

coincident point is ξ = 0, then, 

𝑑𝑤

𝑑℘
= 𝐾0(℘)−1  (19) 

thus, 

𝑤 = 𝐾0𝑙𝑛(℘) + 𝐾1 (20) 

With determinable constants 𝐾0 and 𝐾1  , or 

are complex. 

Since the mapping as described above satisfies 

𝑤(℘):−1 ↦ 0 substituting those values into 

equation (20). 

0 = 𝐾0 𝑙𝑛(−1) + 𝐾1 (21) 

𝑤(℘): 1 ↦ 𝑖ℎ values which are inserted into the 

equation (21) to obtain 

𝑖ℎ = 𝐾0 𝑙𝑛(1) + 𝐾1   (22) 

Since of the fact that ln 1 = 0 the equation (22) 

𝐾1 = 𝑖ℎ (23) 

is obtained. Moreover, 

0 = 𝐾0𝑙𝑛(−1) + 𝐾1 = 𝐾0 ln(−1) + 𝑖ℎ  (24) 

which implies that 

𝐾0 ln(−1) = −𝑖ℎ   (25) 

that is, 

𝐾0 =
−𝑖ℎ

ln(−1)
=

−𝑖ℎ

ln 𝑖2
=

−𝑖ℎ

2 ln 𝑖
 (26) 

Since 
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𝑒
π

2 = cos
π

2
+ 𝑖 sin

π

2
= 𝑖 (27) 

It follows that 

ln 𝑖 =
π

2
 (28) 

Equation (60) becomes 

𝐾0 =
−𝑖ℎ(2)

2π(𝑖)
=

−ℎ

π
 (29) 

This makes the equation (60) to finally become, 

𝑤 =
−ℎ

π
ln(℘) + 𝑖ℎ (30) 

which is equivalent to 

ln(℘) = 𝑖π −
π

ℎ
𝑤 (31) 

To obtain the requisite conformal mapping that 

transforms all the points in the real axis of ℘ − 

plane into the points in the interior of the 

𝑤 −plane, the inverse logarithm of the equation 

(31) is taken and the equation (32) below is 

obtained. 

℘ = −𝑒−
π

ℎ
𝑤

 (32) 

SCHWARZ-CHRISTOFFEL 

TRANSFORMATION APPLIED TO 

CHANNEL FLOW PROBLEM 

Physical Setting of the Problem 

The channel flow of a gravity-influenced 

Newtonian fluid is treated as the physical 

𝑤 −plane. The fluid is flowing in the positive 𝑋 

direction. This plane is then mapped onto the 

auxiliary half-plane, that is the ℘ − plane in a way 

similar to the mapping of the infinite strip, by use 

of the Schwarz-Christoffel theorem. The 

assumptions are made that the fluid has 

dimensional quantities such as uniform speed 𝑈∞ 

far upstream, and velocity potential Φ. Far 

upstream before the arbitrary obstacle is 

encountered, the fluid has a uniform height, ℎ. 

Then 𝑈∞  and ℎ  are used to nondimensionalize 

variables to enable us to work in a completely 

non-dimensional environment. After the non-

dimensionalization of the problem in the section 

below, the setting becomes as illustrated in the 

figure (8). 

Figure 8: Channel Flow Problem with Dimensionless Variables, to which the Schwarz-Christoffel 

Transformation is Applied. 

 

Non-dimensionalization of the Problem 

The attraction between microscopic particles of 

the flowing liquid and those of the boundary 

material gives rise to surface tension forces. In the 

two-dimensional type of flow being considered in 

this study (which is also steady, inviscid, 

irrotational, and incompressible, as already 

mentioned), the consequence of the surface 

tension force is a disparity in the surface pressure. 

If 𝑃0, 𝑃1, γ and R respectively represent the 

dimensional fluid pressures at either side of the 

free boundary, surface tension and radius of 

curvature of the surface, at the free surface 𝑌 =

𝑌𝑓(𝑥) that, 

𝑃1 − 𝑃0 =
γ

𝑅
  (33) 
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Suppose 𝑆̌is the dimensional arclength and θ the 

angle made by the free surface with the horizontal 

and using the approach found in Acheson (1990), 

then, 

𝑅δθ = δ𝑆̌ ⇒ 𝑅 =
𝑑𝑆̌

𝑑θ
  (34) 

So that equation (33) becomes 

𝑃1 − 𝑃0 =
γ

𝑑𝑆̌

𝑑θ

  (35) 

The free boundary condition for this type of flow 

is provided by the Bernoulli equation as 

𝑃1−𝑃0

ρ𝑔ℎ
+

𝑌𝑓

ℎ
+

𝑈𝑓
2

2𝑔ℎ
= 1 +

𝑈∞
2

2𝑔ℎ
  (36) 

Here, h and 𝑈∞ represents the upstream 

dimensional depth and velocity respectively, 𝑌𝑓 

and 𝑈𝑓 the fluid height and dimensional fluid 

velocity on the surface, respectively. Invoking the 

last two immediate equations (35) and (36) then, 

γ

ρ𝑔ℎ
𝑑𝑆̌

𝑑θ

+
𝑌𝑓

ℎ
+

𝑈𝑓
2

2𝑔ℎ
= 1 +

𝑈∞
2

2𝑔ℎ
  (37) 

which is the same as 

𝑈𝑓

𝑈∞
= √{[1 + 2

(1−
𝑌𝑓

ℎ
)

𝐹𝑟
2 + 2 ℎ 𝑊𝑒 (

𝑑θ

𝑑𝑆̌
})] 

 (38) 

with 𝐹𝑟 =
𝑈∞

√𝑔ℎ
 and We =

γ

ρ𝑔(ℎ𝐹𝑟)
2 the Weber 

number. Much like the Mach number, the Froude 

number is a non-dimensional parameter that plays 

a crucial role in describing the behaviour of a fluid 

in open channel flow as elucidated in greater 

detail by Munson et al. (1994), Gerhart et al. 

(2020), and Lonyangapuo (1999). 

The Weber number, We is a dimensional 

parameter 𝑊𝑒 =
 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒
.  

Neglecting the surface tension and viscous forces, 

the Bernoulli equation becomes 

𝑌𝑓

ℎ
+

𝑈𝑓
2

2𝑔ℎ
= 1 +

𝑈∞
2

2𝑔ℎ
  (39) 

No fluid penetrates the bottom, and no fluid leaves 

the flow. 

The summary of the important non-dimensional 

quantities follows. 

𝑥 =
𝑋

ℎ
 , 𝑦 =

𝑌

ℎ
,  𝑠 =

𝑆

ℎ
,  𝑢 =

𝑈

𝑈∞
,  𝑣 =

𝑉

𝑈∞
,  𝑝 =

𝑃

ρ𝑈∞
2 , 

𝑢𝑓 =
𝑈𝑓

𝑈∞
, 𝑦𝑓 =

𝑌𝑓

ℎ
, ϕ =

Φ

ℎ𝑈∞
 and ψ =

Ψ

ℎ𝑈∞
 

 (40) 

The Laplace equation is expressed as 

∂2ϕ

∂𝑥2
+

∂2ϕ

∂𝑦2
= 0,−∞ < 𝑥 < ∞, 𝑦𝑏 < 𝑦 < 𝑦𝑓 

∂2ψ

∂𝑥2 +
∂2ψ

∂𝑦2 = 0, , −∞ < 𝑥 < ∞, 𝑦𝑏 < 𝑦 < 𝑦𝑓 

 (41) 

Also, equations (38) and (39) similarly become 

𝑢𝑓 = √[1 +
2(1−𝑦𝑓)

𝐹𝑟
2 ]  (42) 

and 

2𝑦𝑓 + 𝐹𝑟
2̌ = 2 + 𝐹𝑟

2 (43) 

With 

𝐹𝑟̌ =
𝑈𝑓

2

√𝑔ℎ
 and 𝑦𝑓 =

𝑌𝑓

ℎ
 (44) 

( 𝑦𝑓 𝑖𝑠 the non-dimensionalized height of the free 

surface). 

The situation at the solid boundary is now 

considered. Let 𝑉⃗  be the dimensional velocity of 

the fluid and 𝑉⃗ ̌ the dimensional velocity of the 

solid boundary. If 𝑛⃗  is a unit normal vector to the 

boundary, and since the fluid cannot cross the 

impermeable wall of the channel, it is expected the 

velocity of the fluid at the boundary must have its 

component normal to the boundary equal to the 

normal component of the velocity at the boundary. 

Mathematically, that means 

𝑉⃗ ⋅ 𝑛⃗ = 𝑉⃗ ̌ ⋅ 𝑛⃗  (45) 

EQUATIONS OF TRANSFORMATION 

In a transformation similar to that of the infinite 

strip, the physical plane of Figure (3) is mapped 

onto the auxiliary upper half plane as follows in 

Figure (9). 
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Figure 9: Physical Plane After Being Mapped onto the Half-plane Using Schwarz-Christoffel 

Transformation 

 

In view of the theorem with the angle α = 900 Q 

is mapped onto 𝑄′ by the transformation  

(℘ − (−𝑎))

π
2
π
−1

 (46) 

which is equivalent to 

(℘ + 𝑎)−
1

2 (47) 

Similarly, R also maps to 𝑅′ by the transformation 

(℘ − 𝑎)−
1

2 (48) 

This makes the total transformation of 

𝑄𝑅  to  𝑄′𝑅′ therefore become 

[(℘ + 𝑎)(℘ − 𝑎)]−
1

2  (49) 

The curved channel bed PQ and bottom RS are 

transformed by the equation (18) to respectively 

have 

∫ θ′ ln(℘ − ξ) dξ
−𝑎

−∞
  = [θ(ξ) ln(℘ − ξ)]−∞

−𝑎 −

∫
θ(ξ)

℘−ξ

−𝑎

−∞
× (−1) 𝑑ξ  (50) 

and 

∫ θ′ ln(℘ − ξ) dξ
∞

𝑎
  = [θ(ξ) ln(℘ − ξ)]𝑎

∞ +

∫
θ(ξ)

℘−ξ

∞

𝑎
𝑑ξ  (51) 

after integration by parts.   

But since θ(−𝑎), θ(𝑎), θ(∞), and θ(−∞) all 

vanish, the terms containing the logarithm in the 

equations (50) and (51) vanish as well so that, 

∫
θ(ξ)

℘−ξ

−𝑎

−∞
 𝑑ξ and ∫

θ(ξ)

℘−ξ

∞

𝑎
𝑑ξ (52) 

Given the equations (18), (49) and (52) and 

applying elementary rules for indices, the total 

transformation now becomes 

𝑑𝑤

𝑑℘
= 𝑘[(℘ + 𝑎)(℘ − 𝑎)\

𝑏𝑖𝑔]−
1

2 exp [−
1

π
∫

θ(ξ)

℘−ξ
𝑑ξ

−𝑎

−∞
−

1

π
∫

θ(ξ)

℘−ξ
𝑑ξ

∞

𝑎
]

 (53) 

But quite clearly, 

lim
𝑃𝑄→∞

𝑎 = 0  (54) 

Taking into account the continuity of the limits of 

integration, equation (53) may now be written as 

𝑑𝑤

𝑑℘
=

𝑘

℘
exp [−

1

π
∫

θ(ξ)

℘−ξ

∞

−∞
 𝑑ξ]  (55) 

So far, the symbol ξhas been used to represent 

increments in the real axis of the ℘-plane. To 

conserve the nomenclature for the half-plane, ξ is 

replaced with t in the last equation above so that, 

𝑑𝑤

𝑑℘
=

𝑘

℘
exp [−

1

π
∫

θ(𝑡)

℘−𝑡

∞

−∞
 𝑑𝑡]  (56) 

In view of the equation (56) alongside the 

equation for the upper half-plane, ℘ = ξ + 𝑖η the 

limit, lim
℘→ξ+𝑖0+

∫
θ(𝑡)

℘−𝑡

−∞

∞
 𝑑𝑡 is investigated. 

Quite clearly, 

lim
℘→ξ+𝑖0+

∫
θ(𝑡)

℘−𝑡

∞

−∞
 𝑑𝑡 =

[ lim
℘→ξ+𝑖0+

∫
θ(𝑡)(ξ−𝑡)(𝑑𝑡)

(ξ−𝑡)2+η2 𝑑𝑡

∞

−∞
− 𝑖  ∫

ηθ(𝑡)𝑑𝑡

(ξ−𝑡)2+η2

∞

−∞
] 

 (57) 
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that is after separating the complex and real terms. 

The limit of the non-complex term in the equation 

(57) clearly becomes, 

∫
θ(𝑡)

ξ−𝑡

−∞

∞
 𝑑𝑡  (58) 

when the complex part of the equation (57) is 

considered.  

Letting η𝑡̆ = ξ − 𝑡 ⇒ 𝑡 = ξ − η𝑡̆, 𝑑𝑡 = −η𝑑𝑡̆, the 

complex part changes variables to be 

lim
℘→ξ+𝑖0+

∫
θ(𝑡)

℘−𝑡

∞

−∞
 𝑑𝑡 =

[ lim
℘→ξ+𝑖0+

∫
θ(𝑡)(η−𝑡)

(ξ−𝑡)2+η2

∞

−∞
 𝑑𝑡} −

i ∫
η θ(t)

(ξ−𝑡)2+η2

−∞

∞
 (dt) (59) 

CONCLUSION 

A fluid flow with dimensional quantities and 

uniform speed 𝑈∞, uniform height h and velocity 

potential Φ far upstream before the arbitrary 

obstacle is encountered has been considered. 𝑈∞  

and ℎ  are used to nondimensionalize the variables 

to enable computation in a completely non-

dimensional environment.  The fluid is assumed 

as steady, inviscid, irrotational and 

incompressible, with w representing the physical 

w-plane,  θi the angle made by a tangent to a 

smooth curve on this plane at designated points. 

Then,  

∫
θ(𝑡)

℘−𝑡

∞

−∞
= ∫

θ(𝑡)

ξ−𝑡

−∞

∞
 𝑑𝑡 − 𝑖πθ(ξ) (60) 

The required mapping is, 

𝑑𝑤

𝑑℘
=

𝑘

℘
exp [−

1

π
∫

θ(𝑡)

ξ−𝑡

∞

−∞
 𝑑𝑡 + θ(ξ)] 

 (61) 

FUTURE WORK 

One of the assumptions made in this study is that 

only the flow occurred solely subject to 

gravitational forces. In practice, surface tensional 

forces which were neglected have some effects, 

which, however minimal, will always affect 

boundary conditions. Research in this field with 

consideration of surface tension would be very 

appropriate. 

Another natural development of this study would 

be to extend it from two to three dimensions, 

which mirrors most closely to reality. As 

expected, because of the increase in boundary 

conditions and more sophistication of the 

equations governing the flow, the computations 

would be much more complex. However, with the 

availability of computers with ever-increasing 

computational power and sophisticated multi-

dimensional algorithms, this is attainable. 
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