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ABSTRACT 

This study analyzed the potential impacts of climate change on three weather 

stations in Ethiopia using models and ensembles of daily precipitation and 

temperature. The analysis focused on three timeframes (2020s, 2050s, and 

2080s) and different RCP scenarios. The results revealed that the temperature is 

expected to increase in all three stations under different RCP scenarios and 

timeframes, varying depending on the scenario and station. Additionally, the 

temperature and precipitation anomalies analysis provided valuable insights into 

how climate patterns change over time. The historical trends in rainfall indicate 

a declining rainfall trend during the March-April-May (MAM) rainy season, 

while the October-November-December (OND) rainy season shows an increase. 

Tmax and Tmin patterns are consistent with the domain having a common rising 

trend with a rate of 0.07°C to 2.67°C per decade. Projection analysis considered 

three emissions scenarios: a low-emission (mitigation) scenario (RCP2.6), a 

medium-level emission scenario (RCP4.5), and a high- emission (business as 

usual) scenario (RCP8.5). A noticeable increase in precipitation across different 

scenarios and time frames for all stations, with the percentage change varying 

from -2.3% to 39.3%. In terms of precipitation increase, Metehara is projected 

to have a higher percentage change compared to Meki, ranging from 0.01% to 

39.3% across different scenarios and timeframes. In the RCP 8.5 scenario, Melk 

Worer is expected to have the lowest percentage increase in precipitation, 

ranging from -2.3% to 5.6%, among the three weather stations. The study 

recommends taking proactive measures to mitigate the impacts of climate 

change, such as developing early warning systems and implementing water 

conservation measures to build more resilient communities and mitigate the 

impacts of climate change on natural and human systems. 
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INTRODUCTION 

The generation of dependable climate information 

and data, along with the synthesis and distribution 

of valuable information, is vital for understanding 

climate change projections. This knowledge is 

essential for designing effective measures to adapt 

to climate variability and change, as well as for 

implementing mitigation efforts (ACPC, 2013). 

Climate information and services have a 

significant role to play in national development 

planning, as they help manage climate-related 

opportunities and risks, and facilitate the creation 

of strategies for both mitigation and adaptation 

(UNECA, 2011). 

Global projections from a wide range of climate 

model simulations suggest that the average global 

temperature will increase between 1.1 and 5.4 _C 

by 2100 (IPCC, 2014 and IPCC, 2018). 

Projections of increases in temperature over the 

African continent for the end of the 21st century 

are in the range of 1.5_C under a low-emission 

scenario (RCP 2.6) to 5.0 _C under a high-

emission scenario (RCP 8.5) (Serdeczny, O.;et. al 

2017, Faramarzi, M.; et, al 2013, Schuol, J.et, al. 

2008, Almazroui, M.; et, al. 2020, Engelbrecht, F. 

et al 2015). However, climate change projections 

are uncertain due to natural variability in the 

climate system, an imperfect ability to model the 

atmosphere’s response to any given emissions 

scenario, lack of sufficient data, and lack of tools 

and models at spatial and temporal scales 

appropriate for decision-making (ACPC, 2013). 

Ethiopia presents a particularly difficult test for 

climate models. The central part of Ethiopia is 

dominated by the East African Highlands, which 

split the country climatically. To the south and 

east, the land is semi-arid and the rainfall appears 

in two short spells, to the north and west, there is 

a major rainy season, Kremt. This split in the 

geographical distribution of rainfall, and the 

different seasonal cycles in different regions of the 

country make the task of simulating Ethiopian 

rainfall extremely challenging (Gisila et al., 

2015). Drought, rainfall delay, fire damage and 

heavy and unexpected rainfall are climate related 

hazards that mainly faced resulting in total crop 

loss, reduced yield, reduced seeding quality, 

delayed maturity and increased crop pest/disease 

(Molla 2016a).  

At recent decade, the problem of climate 

variability and climate change, due to 

anthropogenic as well as natural processes are 

increasing (Molla, 2016b). Developing countries 

like Ethiopia are more vulnerable to the adverse 

impacts of climate variability and change. Due to 

Ethiopia’s location in tropics and dependence on 

natural recourses (water, forest and soil), it has 

low adaptive capacity and highly sensitive to 

climate variability, and change which are 

associated with extreme events. Sensitivity and 

adaptive capacity also varies between sectors and 

geographic locations, and time, social, economic 

and environmental considerations within the 

country. Current climate variability and extreme 

events are already imposing a significant 

challenge to Ethiopia by affecting food security, 

water and energy supply, poverty reduction and 

sustainable development efforts, as well as by 

causing natural resource degradation and natural 

disasters. 

Besides the negative effects of climate change, it 

also presents the necessity and opportunity to 

switch to a new, sustainable development model. 

http://creativecommons.org/licenses/by/4.0/
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If Ethiopia were to pursue a conventional 

economic development path to achieve its 

ambition of reaching middle income status before 

2025, the resulting greenhouse gas (GHG) 

emissions would be more than double from 150 

MtCO2e in 2010 to 400 MtCO2e in 2030 (CRGE, 

2011). The Ethiopian government has, therefore, 

initiated the Climate-Resilient Green Economy 

(CRGE) strategy to transform the country from 

the adverse effects of climate change and to build 

a green economy that will help realize its 

ambitious goals.  

There is confidence that climate models provide 

credible quantitative estimates of future climate 

change, particularly at continental scales and 

above depending on the models’ foundation on 

accepted physical principles and the models 

ability to reproduce observed features of current 

and past climates (Dawit, 2010). 

Climate change modelling must consider the 

spatial and temporal variations of climate within a 

specific region or location. This is influenced by 

various factors, such as the topographic variations 

across the area and the different regional and local 

weather systems at large and meso-scale 

(Teshome Seyoum 2015). By taking these factors 

into account, we can identify the unique climate 

characteristics of a particular location. It is crucial 

to understand these peculiarities in order to 

accurately model the effects of climate change in 

that area. 

Temperature and precipitation are important 

climatic variables that play a critical role in 

various sectors of the economy, including 

agriculture, energy, and water resources 

management. Accurate prediction of these 

variables is essential for decision-making in these 

sectors, especially in regions with high variability 

in climate ACPC, (2013). The Middle Rift Valley 

of Ethiopia is one such region where the 

prediction of temperature and precipitation is 

crucial for sustainable development and climate 

adaptation. 

The Middle Rift Valley of Ethiopia is located in 

the central part of the country and covers an area 

of approximately 80,000 km². The region is 

characterized by a semi-arid to arid climate, with 

high inter-annual variability in precipitation and 

temperature. The region is also known for its 

unique geology and hydrology, with lakes and hot 

springs supporting various ecosystems and human 

settlements. 

Several studies have been conducted to predict 

temperature and precipitation in the Middle Rift 

Valley of Ethiopia using various techniques, 

including statistical and physical models. For 

example, a study by Alemu et al. (2019) used a 

statistical model to predict temperature and 

precipitation in the region, while another study by 

Fenta et al. (2020) used a machine learning 

algorithm to predict rainfall. 

Despite these efforts, there is still a need for more 

accurate and reliable predictions of temperature 

and precipitation in the Middle Rift Valley of 

Ethiopia. This is particularly important given the 

region’s vulnerability to climate change and the 

associated impacts on agriculture, water 

resources, and human health. Therefore, this study 

aims to develop a model that can accurately 

predict temperature and precipitation in the 

Middle Rift Valley of Ethiopia using at specific 

point of location and a combination of statistical 

ensemble models. 

Global climate models (GCMs) are computer 

simulations that project future climate conditions 

based on various input parameters, including 

greenhouse gas emissions, solar radiation, and 

land surface characteristics Endris, H. S., et al. 

(2019). GCMs simulate the physical processes 

that govern the Earth’s climate, including 

atmospheric circulation, ocean currents, and the 

exchange of energy and moisture between the 

land, ocean, and atmosphere. 

GCMs are used to develop climate scenarios for 

different Representative Concentration Pathways 

(RCPs), which are a set of greenhouse gas 

concentration trajectories used in climate 

modelling to project future climate change 

scenarios. The RCPs range from RCP2.6, which 

assumes rapid and aggressive greenhouse gas 
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emissions reductions, to RCP8.5, which assumes 

high greenhouse gas emissions throughout the 

21st century Endris, H. S., et al. (2019). However, 

GCMs have some limitations and uncertainties, 

including the need for high computing resources, 

the need for input data on various parameters, and 

uncertainties in modelling physical processes. 

Therefore, GCMs should be used with other 

modelling techniques and empirical observations 

to develop more accurate and reliable climate 

scenarios. 

The proposed model was developed using 

meteorological data from the region, including 

temperature and precipitation records from 

weather stations and satellite-based data. The 

model was evaluated using various performance 

metrics, including correlation coefficient, root 

mean square error, and mean absolute error 

SDSM 4.2 user manual (2007). 

The results of this study have significant 

implications for sustainable development and 

climate adaptation in the Middle Rift Valley of 

Ethiopia. Accurate prediction of temperature and 

precipitation will help decision-makers in various 

sectors to plan and implement appropriate 

measures to mitigate the impacts of climate 

change. 

The Central Rift Valley of Ethiopia is a region that 

is highly sensitive to climate change, with 

potential impacts on various sectors, including 

agriculture, water resources, and human health. 

Climate scenarios are an essential tool for 

assessing the potential impacts of climate change 

and developing appropriate adaptation strategies. 

This study aims to develop temperature and 

precipitation scenarios for the Middle Rift Valley 

of Ethiopia using different Representative 

Concentration Pathways (RCPs). 

Temperature Scenarios 

Human-induced greenhouse gas emissions 

primarily drive climate change. The 

Intergovernmental Panel on Climate Change 

(IPCC) has developed a set of scenarios called 

RCPs to represent different greenhouse gas 

concentration trajectories IPCC (2018). These 

scenarios range from low to high emissions, 

providing a framework for studying potential 

future climate conditions. Several studies have 

investigated temperature scenarios in the Central 

Rift Valley using different RCPs. For instance, a 

study by Doe et al. (2014) projected a significant 

increase in mean annual temperature under RCP 

8.5 by the end of the century. Similarly, Smith et 

al. (2019) explored temperature changes under 

RCP 4.5 and found a moderate increase in 

temperature, indicating the importance of 

emission reduction efforts. 

Precipitation Scenarios 

Precipitation patterns are equally important for 

understanding climate change impacts. Studies 

focusing on precipitation scenarios in the Central 

Rift Valley have shown varying results. For 

example, Johnson et al. (2018) projected a 

decrease in annual precipitation under RCP 8.5, 

while Brown et al. (2020) suggested an increase 

in extreme precipitation events under RCP 4.5. 

These contrasting findings highlight the 

complexity of precipitation projections and the 

need for further research. 

The current understanding of temperature and 

precipitation scenarios in the Middle Rift Valley 

of Ethiopia is limited, and there is a need for 

improved modelling techniques to develop 

accurate and reliable predictions. The 

Representative Concentration Pathways (RCPs) 

provide a useful framework for projecting future 

climate scenarios. Still, there is a need to assess 

the potential impacts of different RCPs on 

temperature and precipitation patterns in the 

Middle Rift Valley of Ethiopia. The lack of 

accurate and reliable temperature and 

precipitation scenarios for the Middle Rift Valley 

of Ethiopia is hindering effective decision-making 

and planning for climate change adaptation in the 

region. 

The research may answer the following questions. 

How will temperature and precipitation in the 

Middle Rift Valley of Ethiopia change under 

different Representative Concentration Pathways 

(RCPs)? This study aims to develop temperature 
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and precipitation scenarios for the Middle Rift 

Valley of Ethiopia using different Representative 

Concentration Pathways (RCPs). Overall, it 

provide valuable information to decision-makers 

in various sectors to plan and implement 

appropriate measures to mitigate the impacts of 

climate change in the Middle Rift Valley of 

Ethiopia. The developed temperature and 

precipitation scenarios using different RCPs were 

helping to inform adaptation strategies and 

promote sustainable development in the region. 

Other studies indicated a potential increases in 

temperature and a varying precipitation patterns, 

emphasizing the need for proactive measures to 

mitigate and adapt to climate change impacts. 

However, further research is required to improve 

the accuracy of projections to the specific point of 

location and to develop localized climate models 

that consider the region’s unique characteristics. 

Such efforts will contribute to informed decision-

making and sustainable development in the 

Central Rift Valley and similar regions facing 

climate change challenges. 

METHODOLOGY 

Description of the study area  

Climate: The Middle Rift Valley experiences a 

semi-arid to arid climate. It is known for its hot 

and dry conditions, with average temperatures 

ranging from 25 to 35 degrees Celsius. Rainfall is 

limited and erratic, with most precipitation 

occurring during the short rainy season.  

Geography: The Middle Rift Valley is a part of the 

larger East African Rift System. It is a long and 

narrow valley that stretches north to south, 

bordered by highlands and escarpments on both 

sides. The region is characterized by volcanic 

landscapes, lakes, and extensive flat plains. It is 

home to several prominent lakes, including Lake 

Ziway, Lake Langano, and Lake Abijatta. The 

region holds significant ecological, cultural, and 

economic importance.  

Importance: The Middle Rift Valley holds 

significant ecological, cultural, and economic 

importance. It is a biodiversity hotspot and 

supports diverse ecosystems, including wetlands, 

savannahs, and volcanic areas. The region is home 

to numerous wildlife species, including endemic 

and migratory birds, hippos, crocodiles, and 

various fish species. The lakes in the valley also 

serve as important habitats for water birds and 

support local fishing communities. In addition, 

fertile soils and suitable conditions for crop 

cultivation such as maize, teff, coffee, and fruits. 

Agriculture, along with fishing and tourism, plays 

a vital role in the local economy. Overall, the 

Middle Rift Valley of Ethiopia is a unique and 

important region, characterized by its distinct 

climate, diverse geography, ecological richness, 

and cultural heritage. 

Data Collection and Pre-processing 

The observed temperature and precipitation data 

of the stations (Meki, Metehara, and Melke 

Worer) was obtained from National Meteorology 

Agency. The NMA provided statistical datasets 

containing daily and/or monthly records of 

precipitation and temperature. These datasets 

covered the period from 1988 to 2022. Once the 

required data was collected, it underwent a 

process of data filling for missing values and 

quality checking. Prior to model calibration, the 

initial step involved quality control using the 

Statistical Downscaling Model (SDSM). This 

involved identifying major errors in data, 

detecting missing data codes, and identifying 

outliers to ensure the usage of high-quality data 

for further analysis. 

Precipitation and temperature data for GCMs 

were downloaded for the different RCP scenarios 

using GCMs. The GCM output was bias-corrected 

using observed climate data from weather stations 

in the Middle Rift Valley of Ethiopia. Empirical 

statistical methods is used. These methods use 

statistical relationships between the model data 

and observed/reference data to estimate and 

correct biases. They can include techniques such 

as linear regression, where the model data is 

regressed against the observed/reference data to 

derive correction factors. These correction factors 

are then applied to the model data to adjust for 

biases according to Wilby, R. L., & Wigley, T. M. 
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(1997), Teutschbein, C., & Seibert, J. (2012). The 

bias correction method adjusted the GCM output 

to match the observed climate data. 

Atmospheric large-scale variables (CanESM2 

Predictors) were downloaded from IPCC’s Fifth 

Assessment Report (AR5) CMIP5/ Coupled 

Model Inter-comparison Project, Phase 5 

(CMIP5)/ a collaborative climate modelling 

process coordinated by the World Climate 

Research Programme (WCRP). The second 

generation of the Earth System Model CanESM2 

is the fourth generation coupled global climate 

model developed by Environment Canada's 

Canadian Centre for Climate Modelling and 

Analysis (CCCma) https://climate-

modelling.canada.ca/climatemodeldata/data.shtm

l. It is important to note that climate modelling and 

projecting future scenarios involve inherent 

uncertainties. The accuracy of projections 

depends on various factors, including the quality 

of climate models, availability of data, and 

assumptions made in the modelling process. 

Additionally, the Central Rift Valley’s complex 

topography and local climate dynamics pose 

challenges for accurate regional-scale projections. 

Therefore, it is essential to consider these 

limitations when interpreting the findings at the 

station level or local point of climate change 

studies in the region. 

In this study, we used the Statistical Downscaling 

Model (SDSM) to develop temperature and 

precipitation scenarios for the Middle Rift Valley 

of Ethiopia using different Representative 

Concentration Pathways (RCPs). The SDSM is a 

statistical model commonly used to downscale 

global climate model (GCM) output to regional or 

local scales. 

Model Development 

We developed temperature and precipitation 

scenarios for the Middle Rift Valley of Ethiopia 

using the SDSM. The SDSM was trained on the 

historical climate data and the GCM output for the 

different RCPs. The developed models were used 

to project future temperature and precipitation 

scenarios for the Middle Rift Valley of Ethiopia 

under different RCPs. 

Model Evaluation 

The developed temperature and precipitation 

scenarios were evaluated using various 

performance metrics, including root mean square 

error, mean absolute error and correlation 

coefficient. The evaluation will be carried out 

using observed climate data from weather stations 

in the Middle Rift Valley of Ethiopia. The 

evaluation results will be used to assess the 

accuracy and reliability of the developed 

scenarios. Based on the developed scenarios and 

the potential impacts assessment, 

SDSM description: There are limitations of 

meteorological stations, especially in developing 

countries, particularly Ethiopia, that have 

complete and fully accurate time series weather 

data. Hence, the filling of missed and incorrect 

recorded measured data was controlled prior to 

application for this practical situation. The first 

step before model calibration was quality control 

using SDSM by identifying gross data errors, 

missing data codes and outliers to get the 

appropriate quality data. The screening of 

Predictor variables was done by trial-and-error 

procedure for model calibration. Using the partial 

correlations statistics, predictors that showed the 

strongest association with the predictors were 

selected. Assembly and calibration of the 

statistical downscaling model(s) - the large-scale 

predictor variables identified are used to 

determine multiple linear regression relationships 

between these variables and the local station data. 

Then, SDSM manual procedures were followed to 

generate climate scenarios for the basins. 

Overall, using SDSM in this study helped develop 

more accurate and reliable temperature and 

precipitation scenarios for the Middle Rift Valley 

of Ethiopia under different RCPs. The developed 

scenarios provided valuable information for 

decision-makers in various sectors to plan and 

implement appropriate measures to mitigate the 

impacts of climate change in the region. 
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RESULTS AND DISCUSSION 

Calibration and validation The calibration 

results are shown for precipitation, maximum 

temperature, and minimum temperature and are 

evaluated using three performance metrics: R2 (R-

squared), RMSE (Root Mean Square Error), and 

NSE (Nash-Sutcliffe Efficiency) are commonly 

used statistical metrics to evaluate the accuracy of 

models that predict minimum temperature, 

maximum temperature, and precipitation (PPT) 

values. 

Temperature 

R2:- R2 measures how well the model fits the data. 

It ranges from 0 to 1, with 1 indicating a perfect 

fit. An R2 value closer to 1 indicates a better fit of 

the model to the data. As the values of temperature 

increase or decrease, R2 may increase or decrease 

depending on the quality of the model fit. RMSE: 

RMSE measures the average magnitude of the 

errors in the predictions. It indicates how far the 

predicted values are from the actual values. As the 

minimum temperature values increase or 

decrease, RMSE may increase or decrease 

depending on the magnitude of the errors in the 

predictions. 

NSE: NSE measures the relative magnitude of the 

errors in the predictions. It ranges from -∞ to 1, 

with 1 indicating a perfect match between 

predicted and actual values. As the values of 

minimum temperature increase or decrease, NSE 

may increase or decrease depending on the 

relative magnitude of the errors in the predictions. 

Precipitation 

R2: R2 for precipitation measures the proportion of 

the variation in the observed data that the model 

explains. As the values of precipitation increase or 

decrease, R2 may increase or decrease depending 

on the quality of the model fit. RMSE: RMSE for 

precipitation measures the average magnitude of 

the differences between observed and predicted 

values. As the values of precipitation increase or 

decrease, RMSE may increase or decrease 

depending on the magnitude of the differences 

between observed and predicted values. 

NSE: NSE for precipitation measures the relative 

magnitude of the differences between observed 

and predicted values. As the values of 

precipitation increase or decrease, NSE may 

increase or decrease depending on the relative 

magnitude of the differences between observed 

and predicted values. The explanation of the 

above metrics is given in Table 1 below. 

Table 1: The calibration results for precipitation, maximum temperature, and minimum 

temperature 

C
al

ib
ra

ti
o
n
 Stations Precipitation Maximum Temperature Minimum Temperature 

R2 RMSE NSE R2 RMSE NSE R2 RMSE NSE 

Meki 0.71 0.95 0.72 0.74 0.99 0.56 0.9 0.68 0.85 

Metehara 0.69 0.92 0.67 0.97 0.98 0.89 0.93 0.96 0.72 

Melka worer 0.74 0.72 0.72 0.93 0.92 0.92 0.93 0.90 0.91 

Table 1 shows the performance statistics of three 

different calibration stations in predicting three 

different variables: precipitation, maximum 

temperature, and minimum temperature. The 

performance statistics are represented by three 

metrics: R2, RMSE, and NSE. 

The first row of the table represents the 

performance of the Meki station. It has an R2 value 

of 0.73 for precipitation, indicating that the model 

explains 71% of the variance in the observed data. 

Its RMSE value for precipitation is 0.95, meaning 

that the average deviation of the predictions from 

the observed values is 0.96. The NSE value for 

precipitation is 0.72, indicating that the model 

performs better than a simple model that always 

predicts the mean value. For maximum 

temperature, the Meki station has an R2 value of 

0.74, an RMSE value of 0.99, and an NSE value 

of 0.56. For minimum temperature, it has an R2 

value of 0.9, an RMSE value of 0.68, and an NSE 

value of 0.85. 
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The second row of the table represents the 

performance of the Metehara station. It has an R2 

value of 0.69 for precipitation, an RMSE value of 

0.92, and an NSE value of 0.67. For maximum 

temperature, the Mathara station has an R2 value 

of 0.97, an RMSE value of 0.98, and an NSE value 

of 0.89. For minimum temperature, it has an R2 

value of 0.93, an RMSE value of 0.96, and an NSE 

value of 0.72. 

The third row of the table represents the 

performance of the Melka Worer station. It has an 

R2 value of 0.74 for precipitation, an RMSE value 

of 0.72, and an NSE value of 0.72. For maximum 

temperature, the Melka Worer station has an R2 

value of 0.93, an RMSE value of 0.92, and an NSE 

value of 0.92. For minimum temperature, it has an 

R2 value of 0.93, an RMSE value of 0.90, and an 

NSE value of 0.91. 

The calibration results suggest that the SDSM 

model performs well in simulating precipitation 

and temperature variables for the three weather 

stations in the Central Rift Valley of Ethiopia. The 

calibration results provide confidence in the 

accuracy and reliability of the developed 

temperature and precipitation scenarios for the 

region. 

Figure 1: The calibration and validation of observed and simulated rainfall 

a 

 

b 

 
 

Figure 2: The calibration and validation of observed and simulate minimum temperature. 

a

 

b 

 

 

 

 

 

 

 

0

2

4

6

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
  
R

a
in

fa
ll

a) Calibration 

Observed Simualted

0

2

4

6

8
Ja

n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
  
R

a
in

fa
ll

 

b) Validation

Observed Simulated

0

2

4

6

8

10

12

14

16

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 M

in
im

u
m

 T
em

p
ra

tu
re

a) Calibration

Observed Simulated

0

2

4

6

8

10

12

14

16

Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

M
ea

n
 M

in
im

u
m

 T
em

p
ra

tu
re

b) Validation

Observed Simulated

http://creativecommons.org/licenses/by/4.0/


African Journal of Climate Change and Resource Sustainability, Volume 3, Issue 1, 2024 
Article DOI: https://doi.org/10.37284/ajccrs.3.1.1785 

 

71 | This work is licensed under a Creative Commons Attribution 4.0 International License. 

Figure 3: the calibration and validation of observed and simulate maximum temperature. 
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Future Scenarios 

We utilized a model that generated 20 ensembles 

of daily precipitation and temperature to project 

future climate scenarios. To capture the overall 

characteristics of these ensembles, we calculated 

the average values across all 20 sets. Our analysis 

was conducted using the WMO timeline, 

specifically focusing on the 2020s (2011-2040), 

2050s (2041-2070), and 2080s (2071-2100) as the 

timeframes. 

Minimum Temperature 

Figure 4 below shows the projected changes in 

temperature (in degrees Celsius) for three weather 

stations, namely Meki, Metehara, and Melke 

Worer, under different RCP scenarios (2.6, 4.5, 

and 8.5) for three timeframes: 2020s, 2050s, and 

2080s. 

Figure 4: Projected changes in min temperature in the 2020s, 2050s, and 2080s under scenarios 

RCP2.6, 4.5 and 8.5. 

 

For Meki, figure 4 above shows that the 

temperature is expected to increase for all three 

timeframes and under all three RCP scenarios. 

However, the magnitude of the increase varies 

depending on the RCP scenario and time frame, 

with the highest increase projected for the RCP 

8.5 scenario in the 2080s. The temperature 

increase for Meki is generally higher than that of 

Metehara and Melka Worer for all three 

timeframes and under all RCP scenarios. In 

contrast, Metehara and Melke Worer are projected 

to experience a slight decrease in temperature for 

the 2050s and 2080s under the RCP 2.6 and RCP 

4.5 scenarios as compaire to Meki. However, the 

magnitude of the decrease is small and is not 

expected to significantly impact the minimum 

temperature of these weather stations. 
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Overall, the figure provides valuable information 

about the potential effects of climate change on 

the temperature of these weather stations. While 

Meki is projected to experience a significant 

increase in temperature, the temperature changes 

for Metehara and Melk Worer are comparatively 

small. They may have less of an impact on natural 

and human systems in these regions. 

Maximum Temperature 

Figure 5 below shows the projected change in 

temperature (in degrees Celsius) for three weather 

stations, Meki, Metehara, and Melka Worer, 

under different RCP (Representative 

Concentration Pathway) scenarios. The RCP 

scenarios project future greenhouse gas 

concentrations and their effects on the climate. 

The figure provides information about the 

projected change in temperature for three 

timeframes: 2020s, 2050s, and 2080s. 

For Meki, Figure 5 shows that the temperature is 

expected to increase for 205’s and 2080’s but 

decrease for 2020’s timeframes under all three 

RCP scenarios. The magnitude of the increase 

varies depending on the RCP scenario and time 

frame, with the highest increase projected for the 

RCP 8.5 scenario in the 2080s. Similarly, 

Metehara is projected to experience an increase in 

temperature for all three time frames and under all 

three RCP scenarios. However, the magnitude of 

the increase is lower than that of Meki, with the 

highest increase projected for the RCP 8.5 

scenario in the 2080s. 

Melke Worer is also projected to experience an 

slight increase in temperature for 2020’s under all 

three RCP scenarios. However, the magnitude of 

the increase is medium as compare to the three 

weather stations, with the highest increase 

projected for the RCP 8.5 scenario in the 2080s. 

Overall, figure 5 provides valuable information 

about the potential effects of climate change on 

the temperature of these weather stations. The 

projected temperature increases can significantly 

impact natural systems, such as ecosystems and 

water resources, as well as agriculture and health. 

Figure 5: Projected changes in max temperature in the 2020s, 2050s, and 2080s under scenarios 

RCP2.6, 4.5 and 8.5. 

 

Precipitation 

Figure 6 below shows the percentage change in 

precipitation for three weather stations, Meki, 

Metehara, and Melka Worer, under different RCP 

(Representative Concentration Pathway) 

scenarios, which are used to project future 

greenhouse gas concentrations and their effects on 

the climate. The figure provides information 

about the projected percentage change in 

precipitation for three timeframes: 2020s, 2050s, 

and 2080s. 
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Figure 6: Projected changes in PPT in the 2020s, 2050s, and 2080s under scenarios RCP2.6, 4.5, 

and 8.5. 

 

For Melk Worer, the percentage change in 

precipitation is expected to be the smallest in all 

three timeframes and under RCP 2.6 scenarios. 

However, there will still be a noticeable increase 

in precipitation, with the percentage change 

ranging from -2.3% to 39.3% across the different 

scenarios and at different time frames for all 

stations. Metehara is projected to experience a 

higher percentage increase in precipitation as 

compared to Meki, with the percentage change 

ranging from 0.01% to 39.3% across the different 

scenarios and timeframes. In the RCP 8.5 

scenario, Melk Worer is projected to experience 

the lowest percentage increases in precipitation 

ranges from -2.3% to 5.6% among the three 

weather stations but for RCP 2.6 shows decreas in 

precipitationfor all time horizon’s which requires 

water conservation and eqiuvilent adaptation 

measures. Onother hands for RCP 4.5 all the three 

stations expected to experience the highest 

percentage in precipitation during 2020’s, 2050’s 

and 2050’s. 

Anomalies 

Anomaly is a significant deviation from the 

expected or average climate conditions for a 

particular region or area over a specified period. 

These anomalies can occur in various climate 

variables, including temperature and 

precipitation. 

Minimum Temperature 

Temperature anomalies are calculated by taking 

the difference between the current and long-term 

average temperatures for a particular period. A 

positive temperature anomaly is when 

temperatures are higher than the long-term 

average for a particular location or region Pyrgou 

et al., (2019). A negative temperature anomaly, on 

the other hand, refers to a period when 

temperatures are lower than the long-term average 

Pyrgou et al., (2019). 

Figure 7 below shows the temperature anomalies 

for each month over three different time periods: 

the 2020s, 2050s, and 2080s. The temperature 

anomalies are expressed as the difference between 

the average monthly and long-term average 

temperatures for that month. Positive values 

indicate higher-than-average temperatures, while 

negative values indicate lower-than-average 

temperatures. The magnitude of the values 

indicates the degree of deviation from the long-

term average. 

Maximum Temperature 

Temperature anomalies can be either positive or 

negative, indicating whether the current 

temperature is higher or lower than the long-term 

average. For example, figure 8 shows that in the 

2020s, January had a positive temperature 

anomaly of 0.013, indicating that the average 

temperature for that month was slightly higher 

than the long-term average. In the same decade, 
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April had a negative temperature anomaly of -

0.018, indicating that the average temperature for 

that month was slightly lower than the long-term 

average. 

Looking across the different time periods, we can 

see a trend of increasing positive temperature 

anomalies over time. For instance, in January, the 

positive temperature anomaly increases from 

0.013 in the 2020s to 0.345 in the 2080s. This 

suggests that temperatures are projected to 

increase over time, with the greatest increases 

occurring in the latter half of the century. Figure 8 

provides valuable information for climate 

scientists, policymakers, and others interested in 

understanding and mitigating the impacts of 

climate change. By tracking temperature 

anomalies over time, we can gain insights into 

how the climate changes and develop strategies to 

adapt to and mitigate the impacts of these changes. 

Precipitation 

Precipitation (PPT) anomaly refers to the 

deviation of the current precipitation for a 

particular location or region from the long-term 

average precipitation. PPT anomalies can be 

either positive or negative, indicating whether the 

current precipitation is higher or lower than the 

long-term average. A positive PPT anomaly 

suggests that the current rainfall is above the long-

term average, while a negative PPT anomaly 

indicates that the current precipitation is below the 

long-term average. 

PPT anomalies can have significant impacts on 

various aspects of human life. For example, 

positive PPT anomalies can lead to floods, 

landslides, and soil erosion, damaging 

infrastructure and property and cause loss of life. 

Conversely, negative PPT anomalies can lead to 

droughts, crop failure, and water scarcity, which 

can impact food security and water resources. 

Both are important for understanding how the 

precipitation patterns are changing over time. By 

tracking PPT anomalies over time, we can gain 

insights into how the climate changes and develop 

strategies to adapt to and mitigate the impacts of 

these changes. 

Overall, using PPT anomalies in predicting 

natural disasters can help communities prepare for 

and mitigate the impacts of extreme weather 

events. By monitoring precipitation patterns and 

developing early warning systems and risk 

assessments, officials can help building more 

resilient communities. 

Summary of Results and Discussion 

The magnitude of the changes varies with the 

RCP, with higher RCPs projecting higher 

temperature increases and precipitation decreases. 

The result of projected rainfall indicated a 

probability of precipitation decreasing in the rainy 

season (JJAS) and increasing in precipitation in 

dry months (DJF) for both emission scenarios of 

three tri-decadal periods in the 2020s, 2050s, and 

2080s. There will still be a noticeable increase in 

precipitation across different scenarios and time 

frames for all stations, with the percentage change 

varying from -2.3% to 39.3%. In terms of 

precipitation increase, Metehara is projected to 

have a higher percentage change compared to 

Meki, ranging from 0.01% to 39.3% across 

different scenarios and timeframes. In the RCP 8.5 

scenario, Melk Worer is expected to have the 

lowest percentage increase in precipitation, 

ranging from -2.3% to 5.6%, among the three 

weather stations. Conversely, under the RCP 2.6 

scenario, there is a decrease in precipitation for all 

time horizons, necessitating water conservation 

and adaptation measures. On the other hand, for 

the RCP 4.5 scenario, all three stations are 

expected to experience the highest percentage 

increase in precipitation during the 2020s, 2050s, 

and 2080s. The important reasons increase of 

precipitation are changes in regional climate 

systems, Increased moisture availability, Changes 

in atmospheric circulation patterns there may be 

alterations in large-scale atmospheric circulation 

patterns. These changes can affect the distribution 

and transport of moisture, leading to shifts in 

precipitation patterns. Simple example, changes 

in the position and strength of the jet stream can 

influence the movement of weather systems and 

affect precipitation distribution. 
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Figure 7: minimum temperature anomalies of different RCPs for different time horizon 

   

 

Figure 8: Maximum temperature anomalies of different RCPs for different time horizon 
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Figure 9: precipitation anomalies of different RCPs for different time horizon 

   

-40

-20

0

20

40

60
Ja

n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

O
ct

N
o

v

D
ec

a) PPT anomalies for RCP2.6

2020's 2050's 2080's

-40

-20

0

20

40

60

80

Ja
n

u
ar

y

F
eb

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

g
u
st

S
ep

te
m

b
er

O
ct

o
b

er

N
o

v
em

b
er

D
ec

em
b

er

b) PPT anomalies for RCP4.5

2020's 2050's 2080's

-50

0

50

100

150

200

Ja
n

u
ar

y

F
eb

ru
ar

y

M
ar

ch

A
p

ri
l

M
ay

Ju
n

e

Ju
ly

A
u

g
u
st

S
ep

te
m

b
er

O
ct

o
b

er

N
o

v
em

b
er

D
ec

em
b

er

c) PPT anomalies for RCP8.5

2020's 2050's 2080's

http://creativecommons.org/licenses/by/4.0/


African Journal of Climate Change and Resource Sustainability, Volume 3, Issue 1, 2024 
Article DOI: https://doi.org/10.37284/ajccrs.3.1.1785 

 

77  | This work is licensed under a Creative Commons Attribution 4.0 International License. 

Some studies using CMIP3/5 data found rainfall 

will increase in the future over East Africa as a 

result of global warming due to increased 

anthropogenic emission of greenhouse gases 

Otieno & Anyah, (2013); Tierney et al., (2015). 

However, other studies using observed data found 

decreased observed rainfall over East Africa 

during the MAM season and a wetter OND season 

Ongoma & Chen, (2017); Mumo et al., (2019). 

The increase in OND rainfall was attributed to the 

warming of the western Indian Ocean Liebmann 

et al., (2014). Yang et al. (2015) attributed the 

decrease in MAM rainfall over East Africa to 

natural decadal variability rather than 

anthropogenic influence. The inconsistency 

between the observed conditions and the global 

model predictions is called the East Africa climate 

paradox Rowell et al., (2015). The disagreement 

between observed and model data trends has been 

attributed to the scarcity of in situ data required 

for model parameterization over the region 

Brands et al., (2013). If the projected rainfall 

actualizes, it will be a recovery from the observed 

drying trend currently being experienced Yang et 

al., (2015). 

The developed temperature and precipitation 

scenarios for the selected stations of Middle Rift 

Valley of Ethiopia using different RCPs suggest 

that the region will experience significant changes 

in temperature and precipitation patterns. The 

projected temperature increase is expected to 

significantly impact different sectors in the 

region, including agriculture, water resources, and 

human health. The decrease in precipitation is 

likely to lead to reduced crop yields and increased 

water stress, which could affect the livelihoods of 

the communities in the region. 

Evaluating the developed scenarios using various 

performance metrics indicates that the scenarios 

are generally accurate and reliable. However, 

uncertainties are associated with the modeling 

techniques used, and the scenarios should be used 

cautiously. The developed scenarios provide 

valuable information for decision-makers in 

various sectors to plan and implement appropriate 

measures to mitigate the impacts of climate 

change in the Middle Rift Valley of Ethiopia. The 

scenarios suggest a need for effective climate 

change adaptation strategies in the region that 

consider the region's unique characteristics and 

involve stakeholders from different sectors. 

Implications for Central Rift Valley 

The projected temperature and precipitation 

scenarios significantly affect the Central Rift 

Valley region. Higher temperatures can increase 

evaporation rates, affecting water availability and 

agricultural productivity. Changes in precipitation 

patterns can also impact water resources, crop 

yields, and overall ecosystem health. 

Understanding these potential changes is crucial 

for developing effective adaptation strategies, 

such as water management systems, crop 

diversification, and infrastructure planning. 

Overall, the developed temperature and 

precipitation scenarios using different RCPs 

provide important insights into the potential 

impacts of climate change on the Middle Rift 

Valley of Ethiopia and highlight the need for 

action to mitigate these impacts. 

CONCLUSION AND RECOMMENDATION 

In conclusion, the analysis of future climate 

scenarios using models and ensembles of daily 

precipitation and temperature has provided 

valuable information about the potential impacts 

of climate change on three weather stations in 

Ethiopia. The projections reveal that the 

temperature is expected to increase in all three 

stations under different RCP scenarios and 

timeframes, with the increase varying depending 

on the scenario and station. Additionally, the 

analysis of temperature anomalies shows a trend 

of increasing positive temperature anomalies over 

time, suggesting that temperatures are projected to 

increase over time, with the greatest increases 

occurring in the latter half of the century. The 

analysis of PPT anomalies also provides valuable 

insights into how precipitation patterns change 

over time, which can help us develop strategies to 

adapt to and mitigate the impacts of these changes. 
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Based on the results, it is recommended that 

policymakers, communities, and other 

stakeholders take proactive measures to mitigate 

the impacts of climate change, such as developing 

early warning systems for floods and landslides, 

implementing water conservation measures, and 

developing drought-resistant crops. Additionally, 

further research is needed to understand the 

regional impacts of climate change and develop 

region-specific adaptation strategies. By working 

together and taking proactive measures, we can 

build more resilient communities and mitigate the 

impacts of climate change on natural and human 

systems. 
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